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Introduction

This book is about multivariable calculus. It is not a textbook - no exercises, no
practice quizzes, not many examples, just calculus. Not all the topics you might expect
are covered and not all those covered are covered completely. You see, this is my book.
I am going to talk about the topics I want to talk about the way I like to talk about
them.

I am fast and loose with hypotheses and, for that matter, grammar. I am more
interested in getting a feel for what in some cases and why in others without worrying
about technicalities.

Sometimes I emphasize not so important things, and don’t emphasize important
things. Like the title says “My Way”.

You may find it useful, I hope you do.
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Chapter 1

Algebra and Geometry

One of the most important things that happened to contribute to the development of
modern society was the linking of algebra and geometry. This statement may sound
a little pompous, if not ridiculous, but I believe it. We think and feel geometrically.
We interact with our environment geometrically, every time we walk through a door
without hitting the sides. But, to precisely deal with with the world, accurately and
efficiently, we describe it algebraically. We have the ability to link the two, associating
geometric objects, usually sets of points, to algebraic objects, usually sets of equations.
The equations allow us to reason with precision and the geometry gives us insight into
the direction of the calculations and the meaning of the results.

1.1 Euclidean spaces

The linking begins with the association of the set of real numbers R with the points on
a straight line.

Simply pick a point and assign it to zero. Pick another point and assign it to one,
usually chosen to the right of zero, since most western cultures move from left to right,
I suppose. The distance between the two points becomes the unit of distance and
determines the associations of the rest of the real numbers to the rest of the points by
insisting that

• the distance between the point associated to the number x and the point associ-
ated to the number y is given by |x− y|

• if y > x, then the point associated to y is to the right of the point associated to
x.

3
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d = |x − y|

This association is so strong and natural that we almost immediately say the point
3 rather that the point associated to the number 3. They have become for all practical
purposes the same. We call the line the real (number) line.

The power of algebra is based on its ability to handle as many quantitative variables
as are necessary to deal with a situation. The link between more than one variable and
geometry is the following.

1.1.1 Rectangular coordinate systems

Two variables are described by ordered pairs of real numbers, the set of which is denoted
by R

2. These ordered pairs are assigned to points in a euclidean plane. Each pair is
assigned to each point in a one-to-one way by first of all building a coordinate system
by putting in two copies of the real line, intersecting at their zeroes. One of the lines
is horizontal and the other is usually perpendicular to it, as illustrated below. There is
also a right-handed orientation built into the system by the placement of the ones on
the lines, which by the way are called the axes. A pair (x, y) is associated to a point
by finding x on the horizontal axis and y on the vertical axis and using lines parallel to
the axes to pin down the point. But, you already know all this and have been doing it
for years or you would not be interested in reading this in the first place.

R
2 = {(x, y) : x, y in R}

x1

1

y . (x,y)

The next step may not be so familiar, but is certainly necessary since the world is
not so simple as two things happening at once. So we have for three variables, R

3 and
euclidean space, but the link is done in exactly the same way.
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R
3 = {(x, y, z) : x, y, z in R}

x

. (x,y,z)

y

z

(0,0,0)

1

1

1

We can now begin to link the basic geometrical concepts to algebraic objects and vice
versa. Perhaps the most basic is distance between two points, which with a coordinate
system in place can be calculated in R

3 using the Pythagorean theorem by

y −y
2 1

z −z2 1

x −x12

(x ,y ,z )222

(x ,y ,z )1 11

.

.
D

D =
√

(x2 − x1)2 + (y2 − y1)2 + (z1 − z2)2

We simply identify the algebraic objects R, R2, and R
3 with the line, plane and

space, and call them euclidean spaces. That is, R
3 refers to both the algebraic set of

ordered triples and geometric space with a coordinate system.
Of course, the world is not always so simple as to be described by three variables,

so that, in general we have

R
n = {(x1, . . . , xn) : x1, . . . , xn in R}

for describing n variables algebraically. But, we have run out of geometry, at least
a tangible geometry. We do not give it up, however. We will call R

n n-dimensional

5



euclidean space, and refer to (x1, . . . , xn) as a point in space and somehow use our
geometrical intuition to reason in R

n. This process will be carried even further by
talking about calculations in R

n that make sense geometrically in R
3, as if they made

the same sense geometrically in any number of dimensions. Pretty soon you think they
do. For example, we call

√

(y1 − x1)2 + . . . (yn − xn)2

the distance between two points (x1, . . . , xn) and (y1, . . . , yn) in n-dimensional space.
The coordinate systems I have described are called rectangular because of the rect-

angular relationships between the axes and the rectangles that describe the association
to points. There are other approaches that are useful, so let me describe the most
common.

1.1.2 Polar coordinates in R
2

The polar coordinates of a point in the plane are two numbers r and θ that tell you how
to get to the point. The number r tells you the distance from the origin to the point
and θ tells you how far to swing up or down from the x-axis to head in the direction of
the point.

r

τθ

x

y

(x,y)r, ]θ[ .

I have written the polar description of the point with square brackets to distinguish
polar coordinates from rectangular. In other words, [2, π

3
] refers to the polar coordinates

of the point whose rectangular coordinates are (
√

3, 1).
One must be able to convert back and forth between the two descriptions, which

can be done with

x = r cos θ

y = r sin θ

One need only use r ≥ 0 and 0 ≤ θ < 2π to identify all the points.

6



1.1.3 Cylindrical coordinates in R
3

Cylindrical coordinates are obtained by simply replacing the x and y rectangular coor-
dinates with their polar counterparts.

[r, θ,z]

θ

r

.

x

y

z

The transformation from one to the other is

x = r cos θ

y = r sin θ

z = z

for r ≥ 0 and 0 ≤ θ < 2π and −∞ < z <∞.

1.1.4 Spherical coordinates in R
3

Spherical coordinates locate a point in terms of ρ, its distance from the origin, and two
angles, φ the angle to rotate up (or down) from the x-y plane and θ, the angle to swing
around the z-axis to head in the direction of the point.

7
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ρ

θ

φ

[ρ, φ, θ]

y

z

x

The transformation between spherical and rectangular coordinates is

x = ρ cos φ cos θ

y = ρ cos φ sin θ

z = ρ sinφ

for ρ ≥ 0, −π
2
≤ φ ≤ π

2
, and −π ≤ θ ≤ π.

I must warn you that most calculus text books use the angle between the z-axis and
the line from the origin to the point for φ, which would cause some differences in the
transformation as well as other calculations that occur later on. So, when comparing
what I say to others, watch for the difference. My choice allows interpretation of φ as
latitude and θ as longitude. Seems like a good idea to me.

1.2 Algebra and geometry

The serious linking of algebra and geometry involves associating algebraic objects in the
form of systems of equations to geometric objects that are the points whose coordinates
satisfy the equations.

You have been doing this for a while yourself. In fact, if I asked you what y = 2x−1
was you would likely say it is a straight line with slope 2 and y-intercept −1. I would
agree with you, but technically we are both wrong. y = 2x − 1 is an equation and the
line refers to the points whose coordinates satisfy the equation. But it is useful and, in
fact, quite comfortable to ignore the technical distinction, so I will.

Describing a line with an equation such as y = 2x − 1 is one of the first kinds
of associations ones learns. One quickly, realizes that the equation 2x − y = 1 also
describes the line. Seen, perhaps, not so quickly, is that

x = 2 + 2t

8



y = 3 + 4t

also describes the line by putting various values for t on the right to produce points
(x, y) on the line. I will clarify this later. These three are the basic kinds of descriptions
and I want to formalize them for posterity.

We will use the following terminology to classify algebraic and the corresponding
geometrical situations.

1. Explicit: A system of equations where some of the variables are given explicitly
in terms of the others is called an explicit system and the corresponding set of
points is explicitly described by the system. For example, these two equations in
four unknowns

z = 3x2 − xy + 3

w = xe−y

explicitly describe z and w in terms of x and y, in that substituting values for x
and y produces directly values for z and w. The geometry sits in R

4, so I don’t
think I’ll worry about it.

2. Implicit: A system of equations relating variables in any way is called an implicit
description. For example,

x2 + y2 + z2 = 4

3x + 2y − z = 1

relates the variables x, y and z implicitly in that values of one or more of the
variables produce values of the other that satisfy the equations, but not without a
little work. Note that geometry here is in R

3, but again we will delay the details.

3. Parametric: A parametric description uses external variables called parameters
to produce values for the variables of interest. For example,

x = 2cos t

y = 3 sin t

describes the variables x and y using the parameter t. The points we want are
the (x, y)’s produced by the values of the parameter.

9



Chapter 2

Vectors

A vector is an object that characterizes a magnitude and a direction. There are both
geometric and algebraic versions. Vectors are used to described such things as forces
which act with a certain strength (magnitude) in a particular direction, and velocity
which describes your speed (magnitude) and direction you are going.

I will begin with the geometric version of a vector which simply specifies an arrow
in the plane or space with the length of the arrow given by the magnitude and the
direction it is pointing, well, that’s the direction.

I will use boldface letters to denote vectors, a,
b, etc. You will also see ~a. The front end of the
vector is called the head and the back end the tail.
The magnitude of a vector a is denoted |a| and is
also called its length.

a

|a|

Vectors have no location assigned to them. You can put them wherever you want,
only the direction and magnitude matter. If you are heading southwest at thirty miles
per hour it does not matter where you are, the description of your velocity is complete.

Vectors are useful for describing change. For example, a vector drawn from a point
P to a point Q is called a displacement vector and denoted ~PQ. It can be thought of
as describing the change in location in moving from P to Q.

2.1 Vector arithmetic

There is, in fact, a variety of ways of manipulating vectors, using operations with
arithmetic names and geometric definitions.

10



2.1.1 Addition and subtraction

Adding two vectors a and b is done by putting the tail of b to the head of a and
connecting the tail of a to the head of b. Got that? Try the illustration on the left below.
This formulation is useful for combining displacements to get a total displacement.
The illustration to the right of that gives an another way to look at addition. This
formulation is useful for working with velocities or forces. Vectors a and b “act” at the
same location and a + b is the resultant effect of their actions.

a a

b

a+b a+b

a

b

a−b

b

Subtraction just produces the vector a− b that one must add to b to get a.
I am not going to spend too much time motivating this arithmetic. We will see it

everywhere in time and motivation will occur naturally. For the moment I just want
to accumulate the information necessary to get going. In particular, how do these
operations work? What are the rules?

The basic rules for addition of vectors are the following.

1. a + b = b + a

2. (a + b) + c = a + (b + c)

3. The is a vector 0, called the zero vector, so that a + 0 = a for any vector a. The
zero vector is just the one with length zero, it points in any direction since it does
not go anywhere.

4. For each a there is a vector −a satisfying a + −a = 0. The vector −a is just a
copy of a with the head and tail reversed. Moreover, a− b = a +−b.

11



You can verify these rules easily by just drawing a couple of pictures, so I will leave
you to do so.

These rules do not appear to say too much, and, of course, there are many more.
But, what they tell you is that vector addition and subtraction act exactly like real
number addition and subtraction, so just go for it.

2.1.2 Scalar multiplication

Scalar multiplication combines
a real number r with a vector a to
produce a vector denoted ra, with
length |r||a| and same direction as a

for r ≥ 0 and the opposite direction
for r < 0. In other words, scalar
multiplication stretches or shrinks
a vector with possibly a reversal of
direction.

a

1.4 a

−.6 a

The rules are

1. r(a + b) = ra + rb

2. (r + s)a = ra + sa

3. (rs)a = r(sa)

4. 1a = a

5. 0a = 0

6. (−1)a = −a

Not very exciting, and there are more rules. Even though you are multiplying
different kinds of objects the arithmetic acts like multiplication in the reals.

2.1.3 Dot product

The dot product of vectors a and
b is the real number |a||b| cos θ,
where θ is the angle between the
two vectors when their tails are
touching. It is denoted a · b

θ

a

b
The dot product is probably somewhat mysterious at this point, but you will find

that it is incredibly useful. It, too, has its rules. Some are a bit difficult to believe, but
they will become clearer.

12



1. a · a = |a|2

2. a · b = b · a

3. (ra) · b = a · (rb) = r(a · b)

4. a · (b + c) = a · b + a · c

When the dot product of two vectors is zero the vectors are said to be orthogonal,
normal or perpendicular to each other since the angle between them is π

2
.

2.1.4 Cross product

The next operation is truly mysterious at first, but you will learn to love it. It is the
cross product. Everything defined to this point works equally well in the plane or in
space, but the cross product is defined only in space.

It is denoted a×b and is the vec-
tor with length |a||b| sin θ, where θ
is the angle between the vectors and
direction perpendicular to both vec-
tors satisfying the so-called right-
hand rule, which is best explained
by carefully looking at the illustra-
tion.

θ

a

ba x b

If you put your pointing finger along a and your middle finger along b, then your thumb
points in the direction of a×b, provided you are doing these gyrations with your right
hand, hence the term “right-hand rule”. Note also that the length of the cross product
is the area of the parallelogram determined by using a and b as adjacent sides.

The rules are not as straightforward as for the other operations, be careful.

1. a × a = 0

2. b × a = −a × b (Your fingers have switched places, so your thumb switches
directions.)

3. a × (b + c) = a× b + a × c

4. a × (rb) = (ra) × b = r(a× b)

The first two are believable, but the last two, although things you would do instinc-
tively, are not so obviously true.

13



2.1.5 The way

It may appear that I have said too little about what is going on and I cannot disagree.
In fact, the situation is much worse than it appears. You have probably been thinking
very geometrically about this arithmetic and that is what I intended. Much of the value
of these operations is in the geometrical insight they will provide in a wide variety of
situations. But, have you actually, made any precise “calculations”. I doubt it, because
all I have told you is how to draw pictures. Pictures are our friends, but they do not
get the work done. In order to effectively work with vectors we need more structure. In
particular, we need to put a coordinate system in space and use it to precisely describe
vectors in a useful way.

The description provides a
recipe for drawing the vector using
three numbers that delineate a
path from the tail to the head. The
first number, a1, gives the length
and direction of the path parallel to
the x-axis, the second, a2, parallel
to the y-axis and the third, a3,
parallel to the z-axis. There is no
pre-ordained starting point - your
choice.

a
2

a
3

a1

a

As is the custom we will identify the geometrical vector with these three numbers,
called its components and write

a = 〈a1, a2, a3〉

where the brackets emphasize that this is a description of a vector, not a point.
Now for the really good news. We have the following for a = 〈a1, a2, a3〉, b =

〈b1, b2, b3〉, and r in R,

1. |a| =
√

a2
1 + a2

2 + a2
3

2. −a = 〈−a1,−a2,−a3〉

3. 0 = 〈0, 0, 0〉

4. a + b = 〈a1 + b1, a2 + b2, a3 + b3〉

5. a − b = 〈a1 − b1, a2 − b2, a3 − b3〉

6. ra = 〈ra1, ra2, ra3〉

7. a · b = a1b1 + a2b2 + a3b3

14



8. a × b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉
The first six are easy enough to believe with at most a picture or two. The dot

product and cross product are a bit more interesting.
For the dot product, look at the triangle using a and b as adjacent sides, then a−b

is the side opposite the angle θ between a and b. The law of cosines gives

|a − b|2 = |a|2 + |b|2 − 2|a||b| cos θ

= |a|2 + |b|2 − 2 a · b

Multiply everything out using 1 and 5, and the required miracle happens when every-
thing cancels but 7.

The cross product is a mess no matter how you look at it. The easiest way out is to
continue to wonder how to derive the result and merely check that it works. First check
that the vector 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉 in 8, call it c for the moment is
orthogonal to a and b by calculating a · c and b · c to see that they are both zero. Next
check the length where the fact that |a× b|2 = |a|2|b|2(1− cos2 θ) = |a|2|b2| − (a · b)2

will be useful. Finally, check that the right-hand rule is satisfied.
These formulas are the basis for precise calculation in vector arithmetic and that

together with the insight provided by the geometrical descriptions are what we need to
get going.

2.1.6 The standard basis

The standard basis in R
3 consists of the three vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉 and

k = 〈0, 0, 1〉. Their role is to provide an alternative way of writing vectors , namely

〈a1, a2, a3〉 = a1i + a2j + a3k

2.2 Miscellaneous

2.2.1 Area and volume

Recall that the length of the cross product of two vectors is the area of the parallelogram
formed using the vectors as adjacent sides. If the vectors are 〈a1, a2, 0〉 and 〈b1, b2, 0〉 the
the area is given by |a1b2 − a2b1|. In fact what we have shown here is how to calculate
the area of a parallelogram in R

2 determined by vectors 〈a1, a2〉 and 〈b1, b2〉.
You may recognize the calculation a1b2 − a2b1 as the determinant of a 2× 2 array

of numbers, which I will denote by

det

[

a1 a2

b1 b2

]

= a1b2 − a2b1

You may have seen it in solving systems of equations. You may not have known that
it computed area. If not, you do now.
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The determinant for a 3 × 3 array also has geometrical implications for us. It is
calculated by

det





a1 a2 a3

b1 b2 b3

c1 c2 c3



 = a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

Note that if the entries of the ar-
ray are the components of vectors
a, b and c, then the determinant
computes a · (b× c), which can be
seen to be the volume of the par-
allelepiped determined by using the
vectors as adjacent sides.

a

b

c

And a final note, if the components of a are replaced by the standard basis vectors
the determinant calculates b× c.

2.2.2 Projections

The projection of a vector b onto a vector a is given by

prab = |b| cos θ
a

|a| =
a · b
|a|2 a

.

θ

b

a
pr b

a

If b represented a force, its projection onto a would describe the effect of the force
in the a direction.
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Chapter 3

Algebra and Geometry - seriously

So, how do you link algebra and geometry? Any way you can.

3.1 Geometry to algebra

Let us begin by looking at how you describe some familiar geometrical objects alge-
braically.

3.1.1 Sphere

To specify a sphere you need to know its center and radius, call it r. The sphere is just
the set of points a distance r from the center.

To describe anything algebraically
you need a coordinate system.
With the coordinate system, the
center can be identified by its co-
ordinates, (h, k, l).

r

(h,k,l)

Now, just use the distance formula, and the sphere “becomes” the set of points
(x, y, z) satisfying

(x− h)2 + (y − k)2 + (z − l)2 = r2

which describes the sphere implicitly.
From here, you can get an explicit description by simply solving for one of the

variables.
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z =

{

l +
√

r2 − (x− h)2 − (y − k)2

l −
√

r2 − (x− h)2 − (y − k)2

In this case, there are two possibilities, a bit messy. The first describes the top of the
sphere and the other the bottom.

How about a parametric description. Sometimes, you just have to get lucky. In
this case, luck is having already been told about spherical coordinates, from which we
obtain

x = h + r cos φ cos θ

y = k + r cos φ sin θ

z = l + r sinφ

where r is the (constant) radius and the parameters are θ and φ.

3.1.2 Line

To specify a line in space you need one of the following

• two different points on the line, say (x0, y0, z0) and (x1, y1, z1).

• one point on the line to locate it, say (x0, y0, z0) and a description of the direction
the line goes. The direction could easily be give by a vector parallel to the line.

• the intersection of two planes.

As it happens, the second is easy to use.

Using a given point (x0, y0, z0) and a
vector a = 〈a1, a2, a3〉 we need to
describe the coordinates of any point
(x, y, z) on the line in terms of them.
Now, the displacement vector from
(x0, y0, z0) to (x, y, z) is parallel to a,
so it is some scalar multiple of a, and
we are almost done.

.
ta.

.

(x ,y ,z )
0 0 0 a

(x,y,z)

From
〈x− x0, y − y0, z − z0〉 = ta

with a little arithmetic, we extract

x = x0 + a1t

y = y0 + a2t

z = z0 + a3t

18



a parametric description of a line in space. You can think that letting the parameter t
range over the reals draws the line.

If you have two points you can use the displacement vector from one to the other,
〈x1 − x0, y1 − y0, z1 − z0〉 for a.

I will come back to the problems of finding explicit and implicit descriptions. Also,
the third way of specifying a line requires that we know how to specify a plane. So,
let’s do that.

3.1.3 Plane

The most famous ways of specifying a plane in space are

• two intersecting lines

• three points in the plane that do not lie on the same line

• a point in the plane and a line perpendicular to the plane.

The first one looks attractive since we are now familiar with lines. We need the
point of intersection and two vectors one parallel to each line. So suppose they are
(x0, y0, z0), a and b.

The same trick that worked for the
line works for the plane, namely
express the displacement vector to
any point in the plane (x, y, z) from
(x0, y0, z0) in terms of a and b. The
figure shows how to build the dis-
placement vector as a sum of scalar
multiples of a and b. That’s it.

.0 0 0

bs

bs

at

at

(x ,y ,z )

a

.
(x,y,z)

b

+

We have, then
〈x− x0, y − y0, z − z0〉 = ta + sb

with a little arithmetic, we extract

x = x0 + a1t + b1s

y = y0 + a2t + b2s

z = z0 + a3t + b3s

a parametric description of a plane in space using parameters t and s.
If we are given three points, then we pick one to use for (x0, y0, z0), use it as the tail

for displacement vectors to the other two, use them for a and b and be done with it.
Let me delay finding an explicit description for the moment and look instead at the

third option.
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As usual, we want a vector a to define the direction of the line perpendicular to the
plane and a point on the plane (x0, y0, z0).

And, as usual we relate the dis-
placement vector from (x0, y0, z0) to
any point (x, y, z) in the plane to
a. As the figure indicates, they are
perpendicular to each other, so that
their dot product is zero.

.0 0 0
(x ,y ,z )

.
(x,y,z)

a

That is,

a · 〈x− x0, y − y0, z − z0〉 = 0

a1(x− x0) + a2(y − y0) + a3(z − z0) = 0

which is an implicit description of the plane.

3.2 Algebra to geometry

Drawing pictures is what it is all about.
Explicit and implicit:

You have a great deal of experience in these cases in R
2. You have the graphs of

many functions, and a few other special cases that will be very useful in the near future,
such as

x2

a2
+

y2

b2
= 1

an ellipse and
x2

a2
− y2

b2
= 1

an hyperbola.
You may have no experience in R

3, so let me give you a trick. The idea is to reduce
the problem to R

2 where you can use your experience. You slice the object with planes
perpendicular to the axes to get two dimensional cross-sections.

For example, what geometrical object does

x2 + y2 − z2 = 1

correspond to?
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Let z = 0, then you have x2+y2 = 1
which is just the unit circle in the
plane. But, we are in space, so the
points that satisfy the equation also
have z = 0. So, the circle is a hori-
zontal slice made by the x-y plane of
the object we are looking for. Slice
at various heights along the z-axis
to get cross-sections of the object.
In particular for z = b you have
x2+y2 = b2+1, another circle. The
horizontal cross-sections are circles
getting large as |b| gets larger.

You can take vertical slices as well, at least one or two to clarify how the horizontal
slices stack up. For example, letting x = 0 in x2 + y2 − z2 = 1 shows that slicing the
object with the y-z plane is the hyperbola, y2 − z2 = 1 which clarifies the shape of the
surface.

If you have more than one equation, the geometrical object is the intersection of the
objects described by each equation

For example,

x2 + y2 − z2 = 1

x + y + z = 0

The first equation describes the hy-
perboloid as before and the second
a plane through the origin. The two
together describe the intersection,
which happens to be an ellipse

This example also suggests how to describe a line as the intersection of two planes.
Each plane is represented by an equation of the form ax + by + cz = d, and the line is
represented by the system of the two equations.
Parametric: Quite frankly, the best way to handle parametric descriptions for R→ R

2

is to get a graphing calculator and look up parametric graphing in the manual. For
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R→ R
3 you can sometimes get insight by using the graphing calculator with two of the

equations at a time. You are looking down the axis of the variable you ignored. Then,
see if you can put it all together.

For R
2 → R

3 you will generally be drawing surfaces, By letting one of the parameters
be constant, you draw a curve in the surface using the other parameter. Several of these
curves should help you visualize the surface.

For example, suppose you have

x = r cos θ

y = r sin θ

z = r

For a fixed r you draw a circle with radius r at height r on the z-axis. For a fixed θ
you draw a straight line through the origin parallel to the vector 〈cos θ, sin θ, 1〉,

θ = π/2

θ = π/2

θ =− π/2

θ =− π/2

r = 1

r = 2

r = 0

r = −1

r = −2

3.3 Going from one to another

You may have one kind of algebraic description, but need another. Let me show you
some ways to do that.

Explicit to implicit: An explicit description is simply a special case of an implicit
description. That was easy.

Explicit to parametric: This one is easy too. You have some variables explained by
others. Use the explainers for the parameters. For example, you have z = x2 + y2, so
let

x = x

y = y

z = x2 + y2
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and there you have it. The parameters are x and y. They are also the variables being
parameterized, which may be confusing and perhaps even embarrassing. If you want to
feel more comfortable do this.

x = s

y = t

z = s2 + t2

to distinguish things properly.

Parametric to implicit: Eliminate the parameters. For example,

x = tan t→ t = tan−1 x

↓
y = sec t→ y = sec(tan−1 x)

which is, in fact, an explicit relationship between y and x.
You may also be able to take advantage of structure specific to the situation. For

the example, you could observe that

y2 = sec2 t = tan2 +1 = x2 + 1

and obtain a nice implicit description

y2 − x2 = 1

which tells you you have an hyperbola.
The first approach may seem more straightforward, but you may lose information.

For example, for x =
√

3, the first gives y = 2, but the second gives y = ±2.
Another example will finish off planes. suppose you have the plane thru (1, 2, 0)

parallel to 〈−1, 1, 1〉 and 〈2,−1, 1〉, then the parametric equations for the plane are

x = 1− s + 2t

y = 2 + s− t

z = s + t

Solve the first two for s and t in terms of x and y to get

s = x + 2y − 5

t = x + y − 3

and substitute in to the third equation to get an implicit (in fact, explicit) description
of the plane

z = x + 2y − 5
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Implicit to explicit: Try to solve for some of the variables in terms of the others, if
you are lucky.

This is a problem that can be attacked with calculus, amazingly enough. More on
that later.

Parametric to explicit: Go to implicit and convert that to explicit, if you are lucky.

Implicit to parametric: This can be really tough. You want somehow to come up
with parameters to describe something some way. There is no systematic way to do
that. You call on experience and magic.

For example,
x2 + y2 = 1

describes the unit circle. Trigonometry tells you that the coordinates of a point on the
circle can be described in terms of distance along the circle, defining the sine and cosine
functions. This leads to the parametrization of the circle

x = cos t

y = sin t

Once you have a parameterization of something you can see ways to expand its use.
For example,

x = h + r cos t

y = k + r sin t

draws a circle with radius r centered at (h, k).

x = h + a cos t

y = k + b sin t

draws an ellipse centered at (h, k). It is, in fact, the ellipse described implicitly by

(x− h)2

a2
+

(y − k)2

b2
= 1
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Chapter 4

Functions

We have spent a lot of time looking at algebra and geometry, but this is supposed to be
a book about calculus. Calculus you do to functions, so now it is time to look at them.

You, by now, are experts on real-valued functions of a real variable,

f : R→ R

x→ y = f(x)

You input x and the function outputs y. You are now ready to increase the numbers
of both inputs and outputs. We will be looking at all of the following at some point or
another.

R→ R R
2 → R R

3 → R

x→ y (x, y)→ z (x, y, z)→ w

R→ R
2

R
2 → R

2
R

3 → R
2

t→ (x, y)

R→ R
3

R
2 → R

3
R

3 → R
3

t→ (x, y, z)

We will focus on these cases because we will have geometry to help with the study,
but, in fact, we could do it all with

f : R
n → R

m

x = (x1, . . . xn)→ y = (y1, . . . , ym) = f(x)

4.1 Sets for functions

To help organize the study of functions and more importantly to bring geometrical
insight into the picture, there are sets associated to a function and they are the following.

Domain: {x in R
n : f(x) is defined }

The domain is the set of possible inputs, which may be specified in the definition of the
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function or assumed to be any x for which nothing goes wrong when it is put into the
function.

Range: {y in R
m : y = f(x) for some x}

The range is just the set of possible outputs. It is also called the image.

Level sets: Level sets come in two varieties.
For b in R

m, the level set at b = {x in R
n : f(x) = b}

For a in R
n, the level set through a = {x in R

n : f(x) = f(a)}
The first is the set of all the points in the domain that produce the output b, and the

second is set of inputs that produce the same output as a. You have actually worked
with level sets all your algebraic life. They are just solution sets to equations, now
appearing in a different context.

Graph: {(x, y) in R
n+m : y = f(x)}

The graph is your old friend, in one variable calculus, at least. I need to say that (x, y)
means (x1, . . . xn, y1, . . . , ym), which says that, for example, the graph of a function
from R

3 to R
2 is in R

5, which may be difficult to draw.

Before going on let me point out again exactly where these sets are. The domain
and level sets are in R

n. The range is in R
m. The graph is in R

n+m.

4.2 Examples

Let’s take a look at f : R
2 → R defined by z = f(x, y) =

1

x2 + y2
.

Domain: {(x, y) in R
2 : f(x, y) = 1

x2+y2 is defined }

Since nothing about the domain is specified in the definition of the function, all we
need do is ask what can go wrong. Certainly if x and y are both zero, then the function
is undefined. Otherwise, there is no problem, so that the domain of f is {(x, y) 6= (0, 0)}.
Range: {z in R : z = f(x, y) = 1

x2+y2 for some (x, y)}
We are being asked what are the possible values of 1

x2+y2 . Because of the squares
the value will always be positive. In fact, any positive value is possible. For b > 0,
just let (x, y) = (1/

√
b, 0), then f((1/

√
b, 0)) = 1/(1/

√
b)2 = b. So, the range of f is

{z : z > 0} = (0,∞).
All of these are illustrated in the diagram below. This picture is a new one, since it

separates the domain space and range space. In one variable calculus these are just real
lines, and have little structure to provide insight. With more variables, they become
interesting in their own right.
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level sets

range
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� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

f

� � � � � � �� � � � � �

0

(

b=2

b=1/2

b=3

b=1

Level sets: For b in R, the level set at b = {x in R
n : 1

x2+y2 = b}
One need only consider b’s in the range, in this case, b > 0. We want the (x, y)’s so

that

1

x2 + y2
= b

x2 + y2 =
1

b

which shows that geometrically, the level sets are circles centered at the origin with
radius 1/

√
b. The circles become smaller as b increases. You will find level sets ocurring

more than you might expect, but for the moment their claim to fame will be their
ability to help with the graph.

Graph: {(x, y, z) in R
3 : z = f(x, y) = 1

x2+y2 }
The secret is that for (x, y) in the level set at b,
the point (x, y, b) is on the graph. So, the level
set is a picture of a horizontal slice of the graph
at height b. To construct the graph, just lift the
level sets to their levels.

This approach is just the horizontal slicing technique in the previous chapter, using
different terminology. Taking a vertical slice or two can ensure that you have a good
picture.
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Let us look at another example, f : R→ R
2 defined by f(t) = (2 cos t, 2 sin t)

Domain: The domain is R.

Range: {(x, y) in R
2 : x = 2cos t and y = 2 sin t}, in other words the range is defined

by familiar parametric equations for the circle centered at the origin with radius 2.

0

f
range

domain

Level sets: For example, the level set at (
√

3, 1) is the set of solutions to the equations

2 cos t =
√

3 or cos t =
√

3
2

2 sin t = 1 sin t = 1
2

So, the level set is {t : t = π
6

+ 2πn for any n}
Graph: {(t, x, y) : x = 2cos t and y = 2 sin t}

If you look down the t-axis you see the range in
the x-y plane. So, as t moves out along the axis,
x and y go around the circle.

t

x

y

4.3 Functions for sets

You may have noticed familiar geometric objects in the examples. In fact, we can
incorporate functions into the algebra-geometry classification scheme.

For a set S
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Algebra-geometry Functions

S is described explicitly ←→ S is the graph of a function
z = x2 + xy − 3 f(x, y) = x2 + xy − 3

R
2 → R

y = 3x− 2 f(x) = (3x− 2, x + 1)
z = x + 1 R→ R

2

S is described parametrically ←→ S is the range of a function
x = 1− 2 cos t f(t) = (1− 2 cos t, 2 + 3 sin t)
y = 2 + 3 sin t R→ R

2

S is described implicitly ←→ S is a level set of a function

I will need a little room to illustrate the implicit relationship. Suppose you have a
set S defined implicitly by the system of equations

x2 = sin(yz) + 2

xy + z = e2z

Rearrange the equations so that only constants appear on one side, which constants
does not matter,

x2 − sin(yz) = 2

xy + z − e2z = 0

The function you need is on the left and the b is on the right. In other words, for
F : R

3 → R
2 defined by F (x, y, z) = (x2 − sin(yz), xy + z − e2z), the set S is the level

set of F at b = (2, 0).
Being able to describe geometric and algebraic situations in terms of functions is a

very important capability. Calculus is built to work with functions, so now calculus can
be used to attack algebra. This may sound a bit strange, but try to solve the equation
x + y + ey = 0 for y in terms of x. Good luck. Using a result from calculus called the
Implicit Function Theorem, even though you cannot solve the equations you may, at
least, be able to determine if a solution exists.

4.4 Vector-valued functions

We have been discussing functions whose values are in R
n, but we will also have need of

functions whose values are vectors. At the beginning of the next chapter we will need
vector-valued functions of one variable and toward the end vector-valued functions of
two and three variables.

So, let me say we have a function that assigns points in R
n to vectors in space (or

the plane).
t→ v(t)
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One useful aspect of vector-valued functions is that they have the same arithmetic
structure that vectors do. The functions inherit the structure from their values. In
particular, for t→ v(t), t→ w(t) and real valued t→ c(t) we define the following.

v + w: t→ v(t) + w(t)
v −w: t→ v(t)−w(t)

cv: t→ c(t)v(t)
v ·w: t→ v(t) ·w(t)

v ×w: t→ v(t)×w(t)

There are many wonderful uses for these kinds of functions, but there is one that I
do not like. People use them to parameterize curves and surfaces. Curves and surfaces
have a location, they are made up of points, so I prefer to use point-valued functions to
draw them. The other point of view is to use vector-valued functions and an artificial
rule to draw things. The rule is

The set of points described by a set of vectors are the points at the heads
of the vectors when there tails are at the origin.

I admit it is fun to imagine a vector with its tail stuck at the origin frantically
swinging around drawing a curve in space with its head. It is not necessary and often
confusing. I think it is done to keep from having two different kinds of functions. I will
use point-valued functions to draw things and vector-valued functions for things that
are really vectors.
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Chapter 5

Derivatives

Now to calculus. As usual, we begin with differential calculus.

5.1 Curves

A nice place to begin is to look at curves in the plane and space. To do anything
quantitative you need a coordinate system and an algebraic description of the curve.
We will be assuming in this section that curves are defined parametrically, so that the
curve we are looking at is the range of a function.

Consider r : R→ R
3 with r(t) = (x(t), y(t), z(t)).

You can think of the parameter as drawing the curve in space. An even more
comfortable interpretation is to think of t as time and r(t) as the location of a particle
traveling through space at time t.

Calculus is the mathematics of change. For a particle moving through space, the
interest could be in change of location, and the rate of change of location, which would
be velocity. So, how do we describe these concepts?

Change in location is easy enough to describe with a displacement vector. In moving
from r(t) to r(t + ∆t), the net change in location is

∆r(t) = 〈x(t + ∆t)− x(t), y(t + ∆t)− y(t), z(t + ∆t)− z(t)〉
and the rate of change per unit change t,

∆r(t)

∆t
=

1

∆t
〈x(t + ∆t)− x(t), y(t + ∆t)− y(t), z(t + ∆t)− z(t)〉

=

〈

x(t + ∆t)− x(t)

∆t
,
y(t + ∆t)− y(t)

∆t
,
z(t + ∆t)− z(t)

∆t

〉

But, this is calculus. We want instant, or rather instantaneous, gratification, so we
let ∆t→ 0 and we have derivatives.

dr

dt
= r′(t) =

〈

dx

dt
,
dy

dt
,
dz

dt

〉
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One variable calculus derivatives at that. So, the obvious question is: So what?

OK, I’ll take that to mean what good is the vector
dr

dt
?

What direction does it point and what is its length?
For direction, a picture suffices.

r∆

r∆

td
dr

∆t
r(t+∆t).

.
r(t)

The vector is tangent to the curve at r(t), that is put the tail of r′(t) at r(t) and it
is tangent to the curve, pointing in the direction of increasing t, the direction of travel
along the curve.

So, what is its length? It is easy enough to write down

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

=

√

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

Let’s back up a minute. |∆r(t)| is the length of the displacement vector, which
approximates the change in distance along the curve ∆s, s denoting the distance or
arclength as it is sometimes called. So, dividing by ∆t and letting it go to zero, gives
the instantaneous rate of change in distance along the curve per unit increase in t. For
our moving particle, that is just its speed!

Fantastic! The vector r′(t) points in the direction the curve is being drawn, that is,
in the direction of increasing t. Its length measures how fast the curve is being drawn.
For a moving particle it points in the direction the particle is going and its length is
the speed of the particle, in other words, it is the particle’s velocity.

5.2 Vector-valued functions

I introduced vector-valued functions in the previous chapter, and now you see their
value. You can do arithmetic to the functions, but can do calculus as well. We just did.

For t→ v(t) = 〈x(t), y(t), z(t)〉 we define

v′(t) =
dv

dt
= 〈x′(t), y′(t), z′(t)〉
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In particular, for t→ v(t), t→ w(t), and real-valued t→ c(t),

(v + w)′ = v′ + w′

(v−w)′ = v′ −w′

(cv)′ = c′v + cv′

(v ·w)′ = v′ ·w + v ·w′

(v×w)′ = v′ ×w + v×w′

5.3 Real-valued functions

First, a quick review.
For a function f : R→ R and a in its domain, the derivative of f at a is

f ′(a) = lim
x→a

f(x)− f(a)

x− a
=

dy

dx

∣

∣

∣

∣

x=a

which does the following collection of wonderful things.

1. f ′(a) is the instantaneous rate of change f(x) = y per unit increase in x at a.
This fact alone makes the derivative worthwhile. Calculus is the mathematics of
change and the derivative is the tool that does the work.

2. y = f(a)+ f ′(a)(x− a) is the equa-
tion of the tangent line to the graph
of f at the point (a, f(a)), a nice ge-
ometrical way to look at the deriva-
tive. a

f(a)

L

f

3. The function L : R → R defined by L(x) = f(a) + f ′(a)(x − a) is the “best”
linear approximation to f near a. The graph of L is the tangent line so the two
functions fit together well. They are doing much the same thing, at least near a.

The function Q : R
2 → R defined by Q(x) = f(a) + f ′(a)(x− a)+ 1

2
f ′′(a)(x− a)2

is the best quadratic approximation to f near a.

4. Algebraic properties of f ′ and f ′′ identify qualitative properties of f . In particular,
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f ′ > 0 =⇒ f is increasing
f ′ < 0 =⇒ f is decreasing
f ′′ > 0 =⇒ f is concave up (convex)
f ′′ < 0 =⇒ f is concave down (concave)
f ′(c) = 0 ⇐= f(c) is a local maximum or minimum
f ′′(c) = 0 ⇐= (c, f(c)) is an inflection point on the graph

We will begin doing these things for f : R
n → R for at least n = 2 or 3, mostly n = 2,

since for that case two things happen. First, we will have geometry for everything,
including the graph. Second, what happens in R

2 is what happens for n > 2, you just
have more alphabet.

5.3.1 Partial derivatives

Suppose you have f : R
2 → R with z = f(x, y) and (a, b) in the domain of f . How does

f(x, y) change as you pass through (a, b)?

That question is not so simple.
What do you mean by “pass
through” (a, b)? In R, there is only
one way to go through a, along the
line. In R

2 there are many different
ways to pass through (a, b) as the
picture shows.

(a,b)

Maybe we better start slowly. Suppose we look at changing one variable at a time,
then we define what are called the partial derivatives of f , as follows.

∂f

∂x
(a, b) =

∂z

∂x
(a, b) = fx(a, b) = lim

x→a

f(x, b)− f(a, b)

x− a

is the partial derivative of f (or z) with respect to x at (a, b) and

∂f

∂y
(a, b) =

∂z

∂y
(a, b) = fy(a, b) = lim

y→b

f(a, y)− f(a, b)

y − b

is the partial derivative of f (or z) with respect to y at (a, b).
What we have is the instantaneous rate of change f(x, y) = z per unit increase in

x at (a, b) with the first, and the instantaneous rate of change f(x, y) = z per unit
increase in y at (a, b) with the second. That is a very good start.

Calculating these derivatives is easy. Since, only one variable is changing, all of the
one variable rules apply. All you need to do is to remember which variable you are
using and to treat all others as constants.
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For example,

f(x, y) = 3x2 − x3y2 + 5y3 + 2
⇒ fx(x, y) = 6x− 3x2y2

⇒ fy(x, y) = −2x3y + 15y2

We can also define higher order derivatives

fxx = ∂2z
∂x2 = ∂2f

∂x2

fxy = ∂2z
∂y∂x

= ∂2f

∂y∂x

fyx = ∂2z
∂x∂y

= ∂2f

∂x∂y

fyy = ∂2z
∂y2 = ∂2f

∂y2

For the example, fxx = 6− 6xy2, fxy = −6x2y, fyx = −6x2y, and fyy = −2x3 +30y.
Note that fxy = fyx. If the function is nice enough, that will always happen. Our
functions will be nice enough.

For the record, for f : R
n → R with y = f(x1, . . . , xn) we have

fxi
=

∂y

∂xi

=
∂f

∂xi

for i = 1, . . . n
Of course, you can keep going to derivatives of any order.

5.3.2 Tangent plane

The equation of the tangent plane to the graph of f at (a, b, f(a, b)) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

The way to see this is to look at one variable at a time. For example, x is the
variable and y = b, then slice R

3 with a vertical plane through (a, b) parallel to the
x-axis.

35



(a,b)

a

x

z

The slice is just a one variable problem, for which we know the answer, the equation
of the tangent line would be z = f(a, b)+fx(a, b)(x−a), where b just goes along for the
ride. But, this is what you get when you put y = b into z = f(a, b) + fx(a, b)(x− a) +
fy(a, b)(y − b), the equivalent of slicing the thing I have called the tangent plane with
the vertical plane. So, this plane contains a line that is tangent to the graph. Similar
reasoning gives a line tangent to the graph determined by letting y vary and x = a.
These two lines determine the tangent plane and its algebraic description.

5.3.3 Approximation

If we let L : R
2 → R be defined by L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b),

then the graph of L is precisely the tangent plane to the graph of f . In other words,
the two functions fit together well for (x, y) near (a, b). How near and how well depends
on f , but L is about as good as it gets with a linear function.

We could calculate a few approximations for the record, but that is not what is
really going on here. The idea is that knowing L and how it acts, can give information
about f and L is easy to work with. Unfortunately, some of the best examples are
beyond the scope of these notes. If you look at the list at the beginning of the chapter
of algebraic properties of derivatives that give qualitative information about f , you can
restate some of them in terms L. For example, f ′ > 0⇒ f is increasing, could be said
L is increasing ⇒ f is increasing near a.

You can improve the approximation by adding more terms to it. L is a polynomial
of degree one. It would seem that using a polynomial of degree two to approximate f
would be an improvement without too much extra effort. The one to use is

Q(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
(fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2)
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Q is not as bad as it looks. The first line is just L, and the rest are the second
degree terms whose coefficients are the second derivatives of f evaluated at (a, b). The
real question is, why should this be a good approximation. At this point in your career,
the best I can do for you is to point out Q and f have the same value, and the same
first and second derivatives at (a, b). There is more, but you will have to wait.

So, what good is Q? That is such an interesting question I am going to dwell on it.
First, we need to get a feel for second degree polynomials in two variables, suppose

we have
P (x, y) = Ax2 + 2Bxy + Cy2

The lower order terms would just be in the way, and the 2 will be convenient later.
In fact, let me simplify further by assuming, for the moment, that B = 0, so that

z = P (x, y) = Ax2 + Cy2.
The level sets of P should be familiar to you. One is enough to tell the story.

Ax2 + Cy2 = k

is one of three things, depending on what A and C are.

• If A and C have the same sign, the level sets are ellipses, the condition on A and
C can be summarized by AC > 0.

• If A and C have opposite signs, that is AC < 0, then the level sets are hyperbolas.

• If A or C is zero, that is AC = 0, the level sets are pairs of parallel lines.

From this we can build the graphs,

AC > 0

Concave up (convex) Concave down (concave)

A < 0A > 0
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AC < 0
Saddle point

AC = 0

It is important to note that you can tell which of the three you have just by looking
at AC .

Now to B 6= 0, if both A and C are zero, we have z = 2Bxy, the level sets are
y = k/x for some constant k, which are also hyperbolas.

Now, for the general case Ax2 + 2Bxy + Cy2. First, a little maneuvering. Let me
assume that A 6= 0, if it is, then do what I am about to do with C . If both are, we just
took care of that.

Ax2 + 2Bxy + Cy2 = A(x2 + 2
B

A
xy +

B2

A2
y2 − B2

A2
y2) + Cy2

= A(x +
B

A
y)2 + (C − B2

A
)y2

= Au2 + (C − B2

A
)y2

where u = x + B
A
y. The new variable u is not really necessary, but it makes a little

clearer that the general case is just like the cases where B = 0. In other words, the
graphs of quadratic polynomials look like one of the three pictured above, and you can
tell which from
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• AC − B2 > 0, strictly concave up for A > 0 and strictly concave down for A < 0

• AC − B2 < 0, a saddle point on the graph

• AC − B2 = 0, a trough, concave up or down, but not strictly.

AC −B2 is called the discriminant, and I will denote it by D.

The discriminant for the best quadratic approximation is

D = fxx(a, b)fyy(a, b)− (fxy(a, b))2

Since Q, fits the function well, the graph of f will look approximately like one of
these three near (a, b, f(a, b)) and you can tell which one by looking at D and fxx(a, b).

There is one catch. If D = 0, you could have, for example, a cubic polynomial which
would not be a trough looking object and would not fit into the scheme of things. So, if
D = 0, you do not learn anything much about f . But, this is not new to you, D plays
the role that f ′′ plays in one variable calculus. f ′′(c) = 0 gives no information about
what happens to f at c. In any case, we have qualitative properties of f identified from
algebraic statements about derivatives, namely

• D > 0, f is concave up if fxx(a, b) > 0 and concave down if fxx(a, b) < 0, or if Q
is strictly concave up (down), then f is strictly concave up (down) near (a, b).

• D < 0, we say (a, b, f(a, b)) is a saddle point on the graph, the analog to an
inflection point in one variable, or if Q has a saddle point at (a, b, f(a, b)), then f
has a saddle point at (a, b, f(a, b)).

5.3.4 Chain rule

I said that you calculate partial derivatives using one variable calculus rules, but that is
not quite correct. There is one rule that is slightly more complicated in a multivariable
setting than for one variable, and that is the chain rule.

The one variable chain rule deals with two functions or three variables, acting one
after the other.

x
g−→ y

f−→ z

In terms of functions the action of g is followed by the action of f . In terms of
variables, z is determined by y, which is determined by x, therefore z is a function of x.

The chain rule describes how the derivative behaves in this situation.
The chain rule in terms of functions is

(f(g(x)))′ = f ′(g(x))g′(x)

in terms of variables
dz

dx
=

dz

dy

dy

dx
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The general multivariable analog is

(x1, . . . , xn)
g−→ (y1, . . . , ym)

f−→ (z1, . . . , zp)

I am not going to justify the chain rule, but what you do is natural, you will not be
too uncomfortable using it. So, here it is

∂zk

∂xi

=
∂zk

∂y1

∂y1

∂xi

+
∂zk

∂y2

∂y2

∂xi

+ . . . +
∂zk

∂ym

∂ym

∂xi

For example, z = f(x, y) and

x = r cos θ

y = r sin θ

So,

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

= cos θ
∂z

∂x
+ sin θ

∂z

∂y
∂z

∂θ
=

∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ

= −r sin θ
∂z

∂x
+ r cos θ

∂z

∂y

Another example: t→ (x, y)→ z = f(x, y), then we have

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
or

dz

dt
= fx

dx

dt
+ fy

dy

dt

5.3.5 Directional derivative and gradient

The partial derivatives do measure change but only in one variable. You might want to
see what happens as you pass through (a, b) in a direction other than parallel to one of
the axes.

All you need to do is specify the direction, which you do, as you might guess, by
specifying a vector u = 〈u1, u2〉 and using it to parameterize a line through (a, b) in the
direction of u by

x = a + u1t

y = b + u2t
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We use a unit vector, that is |u| = 1, so that the parameter measures distance along
the line.

(a,b)

u

u

(a,b)

For f : R
2 → R and (a, b) in the domain of f , the directional derivative of f in the

direction u at (a, b) is

∂f

∂u
(a, b) = lim

t→0

f(a + u1t, b + u2t)− f(a, b)

t

What we have here is the instantaneous rate of change of f(x, y) per unit increase
in distance in the direction u at (a, b). All we are really doing is taking the derivative
of f(a + u1t, b + u2t). Using the chain rule, we can calculate it easily.

∂f

∂u
= fx

dx

dt
+ fy

dy

dt
= fxu1 + fyu2

That last equation looks like a dot product of two vectors, and, in fact, we make it
so.

The gradient of f is the vector 〈fx(x, y), fy(x, y)〉 denoted grad(f)(x, y) or ∇f(x, y)
Then,

∂f

∂u
= ∇f · u
= |∇f | cos θ

where θ is the angle between the gradient of f and the direction u. This angle gives us
some useful information about what the gradient does. In particular,

• (θ = 0): The gradient points in the direction to go to experience the greatest
increase and the rate of increase is |∇f |.
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• (θ = π): −∇f points in the direction of greatest decrease and rate of decrease is
−|∇f |.

• (θ = π
2
) : ∇f(a, b) is perpendicular to the level set of f through (a, b) at (a, b) as

explained below.

To see that the gradient is perpendicular to the level set, build r(t) = (x(t), y(t)) a
parameterization of the level set of f through (a, b). So, f(x(t), y(t)) = f(a, b). Taking
the derivative with respect to t,

fx

dx

dt
+ fy

dy

dt
= 0

∇f · dr
dt

= 0

r(t) draws a level set of f , and therefore dr
dt

is the tangent vector to the level set. The
last equation above shows that the gradient at a point is perpendicular to the tangent
vector to the level set through the point, which is what one means by perpendicular to
the level set at the point.

5.3.6 More tangent

For a function f : R
2 → R with z = f(x, y), we already have the equation of the tangent

plane to the graph at a point (a, b, f(a, b))

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) = L(x, y)

The function L is the best linear approximation and one can say that graph of L is
the tangent plane to the graph of f . But, there is more.

The level set of L through (a, b) intersects the level set of f through (a, b) at (a, b),
since L(a, b) = f(a, b). For (x, y) in the level set of L through (a, b),

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) = L(a, b) = f(a, b)

or
fx(a, b)(x− a) + fy(a, b)(y − b) = ∇f(a, b) · 〈x− a, y − b〉 = 0

which says that the level set of L through (a, b) is perpendicular to the gradient, hence
tangent to the the level set of f at (a, b).

42



f(x,y) = f(a,b)

L(x,y) = L(a,b)

(a,b)

For a function r : R → R
2 given by r(t) = (x(t), y(t)) and t0 in the domain of r,

r′(t0) = 〈x′(t0), y
′(t0)〉 is the tangent vector to the range of r at r(t0). Therefore, the

line through r(t0) parallel to r′(t0) is tangent to the range of r at r(t0). The line has
parametric description

x = x(t0) + x′(t0)(t− t0)

y = y(t0) + y′(t0)(t− t0)

Let L : R → R
2 be defined by L(t) = (x(t0) + x′(t0)(t − t0), y(t0) + y′(t0)(t − t0)),

the the range of L is the tangent line to range of r. L is the best linear approximation
to r near t0.

The bottom line is that any function f : R
n → R

m, with reasonably well-behaved
partial derivatives, has a best linear approximation at each point in its domain. The
graph, the range and level set of the linear approximation through the point are the
tangent planes to the corresponding sets for f .

5.4 Optimization

Local optimization refers to finding local maxima and minima.

In one-variable calculus, you have seen the following.

• If f(c) is a local optimum, then f ′(c) = 0 or does not exist.

• If f ′(c) = 0, then if f ′′(c) > 0, then f(c) is a local minimum,
if f ′′(c) < 0, then f(c) is a local maximum.
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The situation for f : R
2 → R is essentially the same. Look back at the graphs of

the quadratic polynomials. The discriminant D = fxxfyy − (fxy)
2 plays the role of the

second derivative. The key observation is that at a local optimum, the tangent plane
is horizontal, which happens if fx(a, b) = fy(a, b) = 0 or ∇f(a, b) = 0.

• If f(a, b) is a local optimum, then ∇f(a, b) = 0 or does not exist.

•
if D > 0 fxx(a, b) > 0 → f(a, b) is a local minimum.

If ∇f(a, b) = 0, then fxx(a, b) < 0 → f(a, b) is a local maximum.
if D < 0 f(a, b) is not a local optimum.

The discriminant is useful for two variable calculus, but for more variables linear
algebra is need. I can tell you this. If the best quadratic approximation near a has a
strict minimum at a (Q(x) > Q(a), x 6= a), then f has a strict local minimum at a and
so on.

5.5 Infinitesimals - a way to think

If you were moving along at a constant speed, you could calculate the speed by mea-
suring the time, ∆t, and the distance, ∆s, traveled in that time, then your speed would
be

speed =
∆s

∆t

In the early days of calculus people thought of the derivative dy

dx
in exactly the

same way, as a ratio of elapsed distance and elapsed time. The difference was that
the distance and times were infinitesimal, something smaller than any number, but not
zero. They used dx as an entity in its own right. It was infinitesimally small. It could be
interpreted as the width of a point. They would say that as you travel an infinitesimal
distance dx in an instant of time dt your speed is dx

dt
, the ratio of the infinitesimals.

There were rules for calculation with these infinitesimal things that were not entirely
justified, but seemed to work. Such as, the product rule,

d(xy) = ydx + xdy

They were called differentials because they measure an amount of change, but an in-
finitesimal amount as opposed to a real change which was called a difference.

Differences had their rules, too. The product rule is

∆(xy) = y∆x + x∆y + ∆x∆y

The difference includes the so called “higher order terms”. In the example, there
is one higher order term ∆x∆y. Order counts the number of changes appearing in a
given term. For example, x∆y is a first order term and ∆x∆y is a second order term.
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The product for differentials would be derived as follows. x→ x+dx and y → y+dy,
so that the change in the product xy is

d(xy) = (x + dx)(y + dy)− xy

= xy + xdy + ydx + dxdy − xy

= xdy + ydx + dxdy

then you “throw away the higher order terms” to get the product rule for differentials.

d(xy) = ydx + xdy

It works, but why it works wasn’t clear to many people who used it.
It was in the middle of the eighteenth century that the “correct” way was developed.

It involved using real differences

∆(xy) = y∆x + x∆y + ∆x∆y

then dividing through by a difference and letting it go to zero.

∆(xy)

∆t
=

y∆x

∆t
+

x∆y

∆t
+

∆x∆y

∆t
∆(xy)

∆t
= y

∆x

∆t
+ x

∆y

∆t
+ ∆y

∆x

∆t

Letting ∆t go to zero, one obtains the product rule for derivatives.

d(xy)

dt
= y

dx

dt
+ x

dy

dt

Dividing through by a difference, gives ratios of differences and just differences.
The limit process, letting a difference go to zero, finishes the job. The ratios go to
derivatives. The other differences just go away and take anything they multiply with
them, which is why “throwing away higher order terms” works.

Why am I mentioning this? Well, it is intuitive to think in terms of infinitesimals.

• dt is an instant of time

• dx is the width of a point along an axis

• ds =
√

dx2 + dy2 + dz2 is the length of a point along a curve

• dA = dxdy is the area of a point in the plane

• dV = dxdydz is the volume of a point in space

We will have opportunity to think in terms of differentials quite a bit, but that will
come later when we deal with integration.
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5.6 Curves and surfaces

5.6.1 Geometry of curves

I have mentioned that calculus can be used to solve algebra problems, but it can also
be used to study geometry. Let me give you a hint by looking at curves, parameterized
curves.

Suppose, r : R→ R
3 with r(t) = (x(t), y(t), z(t))

I want to decompose the tangent vector r′ into two pieces, one that that describes
direction and the other change in distance, by letting

T =
1

|r′|r
′ and

ds

dt
= |r′|

then

r′ =
ds

dt
T

The vector T has length one, that is it contains only directional information. This
fact makes it a geometrical object in that it is independent of the parameterization,
but depends only on the geometry of the curve. Well, OK, if you reverse the parame-
terization it goes along the curve in the opposite direction but still tells you about the
geometry without any other effect of the parameter.

The derivative of T with respect to arclength tells you how the direction of the curve
is changing per unit distance along the curve, in other words, how the curve is curving.
Break it into pieces as I did above

N =
1

|dT
ds
|
dT

ds
and κ =

∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

then
dT

ds
= κN

The vector N is a unit vector. Differentiating |T|2 = T ·T = 1 to obtain

2T · dT
ds

= 2κT ·N = 0

shows that N is perpendicular to T. In fact, N points in the direction the curve is
curving.

And, κ measures the rate at which the curve is curving and is called the curvature.
An example will give you an even better feel for it.
Parameterize a circle with radius a, with r(t) = (a cos t, a sin t), then

r′(t) = 〈−a sin t, a cos t〉 ⇒ T(t) = 〈− sin t, cos t〉 and
ds

dt
= a
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We have, then
dT

ds
=

dT

dt

dt

ds
=

1

a
〈− cos t,− sin t〉

This equation says that the curvature of a circle κ = 1
a

is the reciprocal of the radius,
the larger the circle, the more slowly it curves as you walk around it. The direction the
circle is curving N = 〈− cos t,− sin t〉, is toward the center of the circle.

I could go on and talk about things like torsion, how the curve is twisting, and
that curves are are essentially determined, if you know their curvature, torsion, starting
point and initial direction. But, I won’t, just an inkling is all you get.

I do think a look at physics may be interesting. If r(t) describes the location of a
particle at time t, then the velocity of the particle is

v(t) = r′(t) = vT where v = s′ the speed

and the acceleration is

a(t) = v′(t) = r′′(t) = v′T + vT′ = aT + vT′

where a is the scalar acceleration along the curve, the derivative of the speed with
respect to time.

Now,
dT

dt
=

ds

dt

dT

ds
= v

dT

ds
= κvN

Now we can write the acceleration in a rather interesting way,

a = aT + κv2N

The first component is tangent to the curve and its length is the linear acceleration
along the curve.

The second component is perpendicular to the curve pointing in the direction the
particle is turning. Recall that the curvature of a circle is one over the radius and the
meaning of κv2 become clear. It is the centripetal acceleration.

So, an application of calculus to geometry to physics.

5.6.2 Surfaces and tangent planes

We can now add a little useful structure to surfaces.
Suppose A : R

2 → R
3 parameterizes a surface with A(s, t) = (x(s, t), y(s, t), z(s, t))

and (s0, t0) is a point in the domain of A.
I want to draw two curves on the surface through A(s0, t0), namely, s → A(s, t0)

and t→ A(s0, t). These intersect at A(s0, t0) and their tangent vectors are given by the
usual partial derivatives,

As = 〈xs, ys, zs〉
At = 〈xt, yt, zt〉
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evaluated at (s0, t0). Since the vectors are tangent to the curves they are tangent to
the surface and together with A(s0, t0) determine a plane, the plane through A(s0, t0)
parallel to As(s0, t0) and At(s0, t0), which more importantly, it is more than reasonable
to call the tangent plane to the surface at A(s0, t0).

(s ,t )
0 0

A(s ,t )0 0

At
A s

s

t

z

y

x

A

0

The vector As(s0, t0)×As(s0, t0) is normal to the surface at A(s0, t0) and could be used
to describe the tangent plane implicitly. We will see more interesting uses for it later.

For example, the unit sphere parameterized by A(φ, θ) = (cos φ cos θ, cosφ sin θ, sinφ)
for which

Aφ = 〈− sin φ cos θ,− sinφ sin θ, cos φ〉
Aθ = 〈− cos φ sin θ, cosφ cos θ, 0〉

Aφ ×Aθ = − cos φ〈cos φ cos θ, cos φ sin θ, sinφ)〉

Look at the point A(π/6, π/3) = (
√

3/4, 3/4, 1/2), then,

Aφ =

〈

−1

4
,−
√

3

4
,

√
3

2

〉

Aθ =

〈

−3

4
,

√
3

4
, 0

〉

Aφ ×Aθ =

〈

−3

8
,−3
√

3

8
,−
√

3

4

〉

= −
√

3

2

〈√
3

4
,
3

4
,
1

2

〉
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(π/6,π/3)

Α(π/6,π/3)

A

−π

π

−π/2 π/2

The tangent plane is described parametrically by

x =

√
3

4
− 1

4
s− 3

4
t

y =
3

4
−
√

3

4
s +

√
3

4
t

z =
1

2
+

√
3

2
s

implicitly by

3

8

(

x−
√

3

4

)

+
3
√

3

8

(

y − 3

4

)
√

3

4

(

z − 1

2

)

= 0

and explicitly by

z =
1

2
−
√

3

2

(

x−
√

3

4

)

− 3

2

(

y − 3

4

)

The structure we have described can be used to study the geometry of surfaces in
much the same way we used calculus to study the geometry of curves.

For example, the curvature of a curve was measured by noting how the unit tangent
vector changed as it moved along the curve. The curvature of a surface can be measured
by looking at how the unit normal vector changes as it moves about the surface, which
can be calculated in terms of directional derivatives of the normal vector.

One difference between curves and surfaces is that at a single point on a surface
you can go in infinitely many directions with the normal vector, so that there are
infinitely many curvatures at a point. There are several that are more important than
others. The principal curvatures are the maximum and minimum curvatures you would
see by looking at directional derivatives of the normal vector at the point. These two
curvatures probably make the most sense, but the most famous is the so-called Gaussian
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curvature, which is the product of the principal curvatures. Why it is the most famous
I’ll leave you to discover. It is worth the safari. The second most famous, and possibly
the most famous for non-mathematicians, is the Riemann curvature. It is this curvature
that Einstein used to describe the effect that mass and energy have on the geometry of
the universe, that we perceive as gravity - the theory of general relativity.

We can look at a couple of examples. The calculations involved are usually quite
complicated, so I will leave them out.

First look at a surface that is the graph of a function z = f(x, y), which will be
parameterized in the usual way with x = x, y = y, and = f(x, y). The normal vector

is 〈−fx,−fy, 1〉 divided by its length, (1 + f2
x + f2

y )
1
2 . After a nontrivial calculation you

would find that the Gaussian curvature, K, is given by

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2

The numerator is nothing more than our old friend the discriminant, which as we have
already seen, measures the shape of the graph near a point.

Another interesting example is the torus, which is obtained by revolving a circle
around an axis outside the circle to obtain a donut shape. For example, for r < a, the
circle in the x-z plane given by x = a + r cosφ, z = r sinφ for −π ≤ φ ≤ π is centered
at (a, 0) and has radius r. When revolved around the z axis the surface generated is
parameterized by

x = (a + r cos φ) cos θ

y = (a + r cos φ) sin θ

z = r sin φ

for −π ≤ φ ≤ π and −π ≤ θ ≤ π.

φ

θ

a

r

The principal and Gaussian curvatures turn out to be

κ1 =
1

r
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κ2 =
cosφ

a + r cosφ

K =
cos φ

r(a + r cosφ)

Notice that for −π
2

< φ < π
2
, on the outside of the torus, κ2 and K are positive.

For φ = ±π
2
, the circles around the top and bottom of the torus, κ2 = K = 0. On the

inside of the torus, κ2 and K are negative.
We also have, κ1 is constant and is, in fact, the curvature of the circle we revolved

to get the torus. κ2 is almost the curvature of a circle. If you take a single point on
the generating circle, that is fix φ, and revolve the point around the z axis the circle
you get has radius a + r cos φ, so that κ2 is the curvature of this circle multiplied by
cos φ. Where the cosφ comes from is a long, but interesting story, involving things like
geodesics, curves in the surface that do not appear to curve in the surface. We are
already pretty far afield, so I will stop here.
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Chapter 6

Integrals

For f : R → R and real numbers a and b, you can talk about the integral of f from a
to b,

∫ b

a

f(x) dx

and what do you say?
What does the integral do?

• Everybody’s favorite use of the integral is that it computes the area under the
graph of f from a to b. A very comforting, easy to grasp idea.

Unfortunately, that is not exactly what the integral does. It actually computes
the area under the graph and above the x-axis minus the area above the graph
and below the x-axis unless a > b in which case it is minus all that. Well, there
goes the comfort part. The reason for this mess is that the integral was not built
to compute area, it was built to do the next thing on the list.

• If f is continuous on an interval I and a is in I , then F : R→ R defined by

F (x) =

∫ x

a

f(u) du

is an antiderivative of f on I . That is, F ′ = f , the integral undoes differentiation.

Antiderivatives are what the integral is all about and the way most people actually
use the integral, but they don’t necessarily realize it. They have a quantity represented
by x and another quantity by y that is instantaneously changing with x. They know
the rate of change and want to know y.

They have even been known to talk this way. For an infinitesimal amount of x, dx,
an infinitesimal amount of y is given by

dy =
dy

dx
dx
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so that, to get y all you need to do is add up the infinitesimal pieces by integration, or

y =

∫

dy =

∫

dy

dx
dx

For example, suppose you have a reasonably uniform piece of wire and you know
the density, ρ in terms of length. You want to know the mass of the wire, so you take
the density, which is a rate, namely, mass per unit length, multiply by an infinitesimal
length to get an infinitesimal amount of mass dm = ρ(x) dx, then add them to get the
mass m of the wire,

m =

∫

dm =

∫

ρ(x) dx

You might even say dx is the length of a point and dm is the mass of a point-size piece
of wire - and I would not laugh at you.

People actually did reason in terms of infinitesimal pieces of things in the beginnings
of calculus. It was intuitive and worked. Mathematically, it is not rigorous, that is, not
legal, so we mathematicians fixed it. But, infinitesimals are still intuitively appealing,
and people still think and work that way and do great things. You will find me doing
it, too. Soon, I will find you doing it.

The wire example is unrealistic, wire has volume, not just length, but you have only
one variable calculus, hence the uniform assumption. What you really want to do is to
take the density of an object, mass per unit volume, multiply by an infinitesimal volume
and add them up. That requires the Riemann integral for three variables, but we will
start with two variable version. When we finish we will have the following integrals.

Integrating over a set of
1 dimension 2 dimensions 3 dimensions

R
∫ b

a
f(x) dx

R
2
∫

C
f(x, y) ds

∫

D
f(x, y) dA

R
3
∫

C
f(x, y, z) ds

∫

S
f(x, y, z) dS

∫

B
f(x, y, z) dV

In other words, you will be able to integrate functions over all possible dimensional
sets in any of the three euclidean spaces where they make sense.

6.1 The Riemann integral

6.1.1 The hard way

In one variable calculus, you no doubt began by looking at the definition of the Riemann
integral. You have f : R→ R and an interval [a, b].

• You chop up the interval into pieces,
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• pick a point in each piece and evaluate the function there,

• multiply the function value for the piece by the length of the piece,

• add them all up and you have a Riemann sum.

• Finally, you take the limit of the Riemann sums as you chop the interval finer and
finer and that is the integral

which you computed this way once, maybe twice. Fortunately, you can calculate in-
tegrals much more easily using antiderivatives, so that is for the most part what you
did.

Be that as it may, we define the Riemann integral for f : R
2 → R the same way.

Basically, I’ll give you a sketch. Suppose you want to integrate the function f : R
2 → R

over a rectangle R

• You chop up the rectangle into pieces,

• pick a point in each piece and evaluate the function there,

• multiply the function value for the piece by the area of the piece,

• add them all up and you have a Riemann sum.

• Finally, you take the limit of the Riemann sums as you chop the rectangle finer
and finer and that is the integral

∆ Α

.

f(x*)

x*.

R

R

and we have vaguely
∫

R

f(x, y) dA = lim
∑

f(x∗)∆A
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One advantage to this approach is that you believe you have calculated something
you understand, the volume under the graph. You have a solid with R as the base, and
the graph of f as the top, and vertical sides. Well, provided the graph is above the x-y
plane. If it goes below, then the volume is subtracted, but comes as no surprise.

This time you will not even have to calculate it once, we proceed immediately to
. . .

6.1.2 The easy way - iterated

Let’s reconsider
∫

R
f(x, y) dA

Suppose we pick an x and slice the x-axis with a plane perpendicular to it at the
point x, then we get a cross-section of the solid under the graph of f ,

c

dV = A(x)dx

A(x)

z

yx

dc

a

b
d

x

The area of this cross-section is the one variable integral

A(x) =

∫ d

c

f(x, y) dy

where x is treated as a constant. In space we have an infinitesimally thin slice whose
volume is A(x) dx, the area of the base, A(x), times the thickness, dx. To get the
volume just add up the volumes of the slices from one side to the other.

∫ b

a

A(x) dx =

∫ b

a

(
∫ d

c

f(x, y) dy

)

dx

Essentially, we are simply integrating away each variable, one at a time. The integral
is called an iterated integral, written

∫ b

a

∫ d

c

f(x, y) dydx
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You could also slice perpendicular to the y-axis to get

∫ d

c

∫ b

a

f(x, y) dxdy

We have the following wonderful fact that we will assume applies at all times.

∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dydx =

∫ d

c

∫ b

a

f(x, y) dxdy

Not only do we get an easier way to calculate, we can easily expand to more general
regions. A set of points is convex means that for any two points in the set, the line
segment connecting the points is entirely in the set. Suppose D is a bounded, convex
subset of R

2, the fact that it is convex means that we can realize the top and bottom
as the graphs of functions of x, we can also realize the sides as functions of y. Perhaps
a picture is worth a few words.

a x b

c

d

y=T(x)

y=B(x)

x=L(y)

x=R(y)

D
D

y

So, to integrate over D we can do it either of two ways. First slice at a fixed x
between a and b. At that x, B(x) ≤ y ≤ T (x) so the area of the slice is

∫ T (x)

B(x)

f(x, y) dy

and then adding up the slices gives

∫

D

f(x, y)dA =

∫ b

a

∫ T (x)

B(x)

f(x, y) dydx

similarly
∫

D

f(x, y)dA =

∫ d

c

∫ R(y)

L(y)

f(x, y) dxdy
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If the region you want to integrate
over is not convex, you may be able
to chop it up into convex sets and
deal with them individually, then
add up all the results

And that’s how its done.
Now there is no reason to restrict to two variables either the Riemann integral or

iterated integrals. The geometry of the situation disappears rapidly, but the arithmetic
is the same. You can define Riemann sums and take their limits, and iterate integrals
in any number of variables as well. We will stick to 2 or 3 variables.

In R
3 you would want a Riemann integral over a three dimensional solid B, if the

solid is convex, the you could imagine doing something like this.

∫

B

f(x, y, z) dV =

∫ b

a

∫ R(x)

L(x)

∫ T (x,y)

B(x,y)

f(x, y, z) dzdydx

6.1.3 Changing the variable

Changing variables in an integral is one of the most useful techniques of integration.
Recall, that for u = g(x),

∫ g(b)

g(a)

f(u) du =

∫ b

a

f(g(x))g′(x) dx

You could go from right to left and eliminate x or you could go from left to right and
introduce x. Either way you change the problem and hope it gets better.

Let me look at the pieces of the formula.

1. f(u) = f(g(x)) are the values of the function, given in terms of u or x, they are
the same.

2. [a, b] the set of x’s being used, [g(a), g(b)] (or possibly [g(b), g(a)]) the set of u’s
that are being used, and are the range of g.

3. du = g′(x) dx, this is a critical one. You could say you are integrating f in u,
that is what you want to calculate, so in changing to x, you need to know what
an infinitesimal piece of u, du, is in terms of x and it is precisely du

dx
dx = g′(x)dx.

You want to change the variable, but not the geometry.

So, to R
2. You have

∫

D

f(x, y)dA
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and think a change of variables is worthwhile. When would that be?
Suppose you need to integrate over the annulus, D = {(x, y) : 1 ≤ x2+y2 ≤ 4}. This

set is not at all fun to integrate over. You would need to chop it up into four pieces, with
unpleasant functions describing the sides. However, look at G(r, θ) = (r cos θ, r sin θ).
The rectangle R = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π} draws D.

R

D

1 2
0

2π

G

and integrating over R is easy.
In general, suppose we want to change variables in

∫

D
f(x, y)dA from (x, y) to (t, u)

using G(t, u) = (x(t, u), y(t, u)). We need that part of the domain of G that draws D,
call it E. We can now say that

∫

D

f(x, y)dAx,y =

∫

E

f(x(t, u), y(t, u)) dAt,u

where the box must contain whatever scale factor is needed so that

dAt,u = dAx,y

So, imagine, if you will, an infinitesimal box in t an u and its image under G.

t dtG

duGu

du

dt

G

We can approximate the image with a parallelogram built from the first derivatives of
G, tangent vectors to the image. This step is also known as “throwing away higher
order terms”. The parallelogram is an infinitesimal piece of area in (x, y) described in
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terms of t and u. The sides of the parallelogram are Gtdt = 〈xtdt, ytdt〉 and Gudu =
〈xudu, yudu〉. The area, according to 3.2.1 earlier in the book, is

dAx,y = |xtdt yudu− xuduytdt| = |xtyu − xuyt|dtdu = |xtyu − xuyt|dAt,u

and
∫

D

f(x, y)dAx,y =

∫

E

f(x(t, u), y(t, u))|xtyu − xuyt| dAt,u

and that’s it.
J(t, u) = xtyu − xuyt is called the Jacobian determinant.
For the annulus example, J(r, θ) = xryθ − xθyr = r, so that

∫

D

f(x, y)dA =

∫

R

f(r cos θ, r sin θ) r dA

If you want to change variables in R
3 from (x, y, z) to (t, u, w). Another look at

3.2.1 might convince you that the Jacobian determinant should be

J(t, u, w) = det





xt xu xw

yt yu yw

zt zu zw





6.2 On lower dimensional sets

You could want to add things up along a curve or over a surface. The philosophy is the
same, function value times an infinitesimal amount of the space, add them up.

6.2.1 Curves

We want to integrate a function f : R
2 → R along a curve C between two points on

the curve, P and Q. The integral will be denoted

∫

C

f(x, y) ds

It is defined just as it is written, add up values of f times an infinitesimal amount of
arclength along the curve.

It may come as no surprise that we will find it productive to have a parameterization,
r : R→ R

2 with r(t) = (x(t), y(t)). Now we describe everything in terms of r.
In particular, P = r(a) and Q = r(b) for some real numbers a and b and

ds =
ds

dt
dt =

√

(

dx

dt

)2

+

(

dy

dt

)2

dt
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and the integral of f over C is defined to be
∫

C

f(x, y) ds =

∫ b

a

f(x(t), y(t))
ds

dt
dt

It should be clear how to define the integral for curves in space, just add the z stuff.
We can now integrate functions on one dimensional sets in R

2 and R
3 by using a

parameterization to reduce the calculation to an ordinary Riemann integral in R.

6.2.2 Surfaces

Defining an integral over a surface proceeds just as with the curves. You have a surface
S in R

3 and a function f : R
3 → R. You want to multiply the values of f by an

infinitesimal piece of area on the surface and add them up.
Naturally, find a parameterization r : R

2 → R
3 with r(t, u) = (x, y, z) and a region

D in R
2, so that the values of r at points in D produce the surface S we want to work

with. We will reduce the problem to a Riemann integral over D in R
2.

The first step of the reduction is to determine how to measure area on S in terms
of area in D. Take an infinitesimal rectangle in D with sides dt and du whose area
is dA = dtdu. Its image under r would be some infinitesimal region, which we can
approximate by a parallelogram built from the tangent vectors to the surface. Using
the parallelogram instead of the image amounts to “throwing away higher order terms.”

rt dt

r
udu

du

dt

r

The area of this parallelogram would be the infinitesimal area we need. The area is

dS = |(rtdt)× (rudu)| = |rt × ru|dtdu = |rt × ru| dA

The integral of the function over the surface is
∫

S

f(x, y, z) dS =

∫

D

f(x(t, y), y(t, u), z(t, u))|rt× ru| dA
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Chapter 7

Vector fields

A vector field is a function that assigns to a point in R
n an n-dimensional vector. In

general, of course, vectors have no location, but in this case one usually puts the tail of
the vector field at the point where it is defined.

For example, for F : R
2 → 2-dimensional vectors, with (x, y) → F(x, y) we might

have a picture like this.

(x,y)F

(x,y)

You can no doubt see why vector fields and this visualization could be useful. The
field in this picture might represent the velocity vectors of a fluid flowing the through
the plane, or a force field acting at each point in the plane.

We are already familiar with a most important vector field, for f : R
2 → R, its

gradient ∇f is a vector field. We have typically drawn ∇f(x, y) with its tail at (x, y)
because it shows the direction of maximum increase from there.

7.1 The antiderivative problem

For a function f , ∇f is a vector field. It would be reasonable to ask if a given vector
field F is somebody’s gradient.
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More precisely, given a vector field F is there a function f , so that F = ∇f?
This is the basic antiderivative problem. In one variable calculus, the Fundamental

Theorem of Calculus says if F is continuous, then the answer is yes. Look at the
beginning of the chapter on integration (except that the roles of F and f are reversed).

Let’s look at a few examples. I give you F(x, y) = 〈P (x, y), Q(x, y)〉 and you find f
so that fx = P and fy = Q.

• F(x, y) = 〈2x, 2y〉
OK, how about f(x, y) = x2 +y2, which could be obtained by just thinking about
it.

• F(x, y) = 〈y, x〉
OK, how about f(x, y) = xy.

• F(x, y) = 〈−y, x〉
Got anything - no - there is a reason for that. If there is an f so that fx = −y
and fy = x, then the first equation says fxy = −1 and the second says fyx = 1,
but they should be equal. So, F does not have an antiderivative.

The first two fields had antiderivatives. In fact, adding any constant gives another
antiderivative. The third, a harmless, simple vector field does not.

We do have a test.

• For F = 〈P, Q〉 a vector field on R
2, F has antiderivative =⇒ Qx = Py.

• For F = 〈P, Q, R〉 a vector field on R
3, F has antiderivative =⇒ curl(F) = 0. The

curl will be discussed in detail a bit later, but for the moment I’ll just tell you
what it is and let you determine why the statement is true.

curl(F) = ∇× F = 〈Ry −Qz, Pz −Rx, Qx − Py〉

The test is easy to apply, but gives only negative information. If Qx 6= Py, then
there is no antiderivative. If Qx = Py, then you don’t know what happens. Of course,
you could give it a try and see what you can do.

For example F(x, y) = 〈3x2 − 2y,−2x + 2y〉 so that, Py = Qx = −2.
If P = fx for some f , then

f(x, y) =

∫

fx(x, y) dx =

∫

P (x, y) dx =

∫

(3x2 − 2y) dx = x3 − 2xy + g(y)

where g is any function of y alone, since gx would be zero, and

f(x, y) =

∫

fy(x, y) dy =

∫

Q(x, y) dy =

∫

(−2x + 2y) dy = −2xy + y2 + h(x)
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where h is any function of x alone.
We have two versions of what f should be. Do they say the same thing? If g(y) = y2

and h(x) = x3, then they do. So that, f(x, y) = x3 − 2xy + y2 + c, for any constant c
is an antiderivative for F.

A little more subtle example is the following.

F(x, y) =

〈 −y

x2 + y2
,

x

x2 + y2

〉

then

Py =
y2 − x2

(x2 + y2)2
= Qx

So, we go for it.

∫ −y

x2 + y2
dx = − tan−1

(

x

y

)

+ g(y)

∫

x

x2 + y2
dy = tan−1

(y

x

)

+ h(x)

It would appear that these two do not match up, but they do, if you let g(y) = π
2
.

Think of a right triangle, if one of the angles has tangent y/x, then the other, π/2−
that angle has tangent x/y. Well, they agree, at least when x/y and y/x are tangents
of angles in a right triangle, that is for x, y > 0. In other quadrants they do not
necessarily agree. For example, if x = 1 and y = −1, then π

2
− tan−1 x

y
= π

2
+ π

4
= 3π

4
,

but tan−1 y

x
= −π

4
.

We can do the following.

f(x, y) =















tan−1
(

y

x

)

x > 0 A
π
2
− tan−1

(

x
y

)

y > 0 B

−π
2
− tan−1

(

x
y

)

y < 0 C

We are using A to cover everything to the right of the y-axis and B to cover
everything above the x-axis, and the only place we are using both at the same time
is for x > 0 and y > 0 where we know they agree. To go across the bottom we just
pick the constant that gives agreement with A when x > 0 and y < 0, giving C .
All we have left is to patch across the negative x-axis, but that will be impossible. As
you approach the x-axis from above, B approaches π. Approaching from below C
approaches −π, so that there is a 2π discontinuous jump that can’t be patched.

The original vector field is defined everywhere but (0,0). The antiderivative is defined
everywhere except the negative x-axis. We have found an antiderivative, on part but
not all of the domain of the vector field. So, we found an antiderivative - sort of. It
may not seem like much of a problem, but it is just the kind of thing that makes a
mathematician mad and we will come back to it.
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Much of the early work in calculus was done to solve physics problems. Physics
people would say that a vector field that is somebody’s gradient is conservative and the
somebody is its potential function. You will see these terms used in mathematics books
as well.

7.2 Derivatives of vector fields

7.2.1 Curl and divergence

Earlier I mentioned something called the curl of a vector field. It is actually one of two
ways to differentiate a vector field on R

3.

curl(F) = 〈Ry −Qz, Pz − Rx, Qx − Py〉
The curl is also written∇×F. The curl measures the tendency for the vector field to

be rotating in the vicinity of a point. The magnitude measures the amount of rotation
and the direction the axis of rotation. More on this shortly.

Technically the curl is defined in R
3, but you can use it on two-dimensional fields.

For F(x, y) = 〈P (x, y), Q(x, y)〉 look at the vector field F̂ = 〈P, Q, 0〉. Note that any
derivatives with respect to z of P an Q would be zero since they are functions of x and
y alone. So, we have curl(F̂) = 〈0, 0, Qx − Py〉.

The other way of differentiating a vector field is called the divergence and is defined
to be

div F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

The divergence is also denoted ∇ · F. It is defined on R
2 as well, just delete the z

stuff. The divergence measures the extent to which the field is flowing into or out of
the point where it is calculated.

Let’s look at two examples,
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F(x, y) =

〈

−y
√

x2 + y2
,

x
√

x2 + y2

〉

G(x, y) =

〈

x
√

x2 + y2
,

y
√

x2 + y2

〉

curl(F̂) =

〈

0, 0,
1

√

x2 + y2

〉

curl(Ĝ) = 0

div(F) = 0 div(G) =
1

√

x2 + y2

These two examples pretty well tell what these two derivatives measure, if not why
anyone cares.

These are differentiation operations, so they have their rules. Such as the following.

• ∇ × (F + G) = ∇× F +∇×G

• ∇ × (fF) = ∇f × F + f∇× F

• ∇ · (F + G) = ∇ · F +∇ ·G

• ∇ · (fF) = ∇f · F + f∇ · F

• ∇ × (∇f) = curl(∇f) = 0

• ∇ · ∇× F = div(curl(F)) = 0

There are, of course, many more, you see here the basics.
The last two are interesting for antiderivative problems. They yield tests for not

having an antiderivative, the first of which I have already mentioned. They are, for a
given F

• F = ∇f for some f ⇒ curl(F) = 0

• F = curl(G) for some G⇒ div(F) = 0
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That covers the antiderivative problem for the gradient and the curl, for the moment,
what about the divergence? For a function f is there a vector field F so that div(F) = f?
Yes,

F =

〈

p1

∫

f(x, y, z) dx, p2

∫

f(x, y, z) dy, p3

∫

f(x, y, z) dz

〉

where p1 + p2 + p3 = 1

7.2.2 The Del operator

A function that acts on functions is often called an operator. You have seen many, but
probably have not called them operators,

• ( )′ : f → f ′

•
∫

( ) : f →
∫

f(x) dx

• ∂
∂x

: z → ∂z
∂x

• ∇ : f → ∇f

• curl : F→ curl(F)

• div : F→ div(F)

Perhaps the most important to us of late is the so called del operator, ∇. We will
begin to think of it as a vector of operators and build an arithmetic around it, that will
at least help us remember how to calculate some of the other operators we are using.
So, the del operator is officially

∇ =

〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉

We are now going to use the usual vector arithmetic with operators thrown in. There
is a rule for multiplication that must be used.

Multiplying an operator on the left by a function is ordinary multiplication.
The action produces an operator.
Multiplying an operator on the right by a function means apply the operator
to the function. The action produces a function.

For example,

f∇g = f

〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉

g =

〈

f
∂

∂x
, f

∂

∂y
, f

∂

∂z

〉

g =

〈

f
∂g

∂x
, f

∂g

∂y
, f

∂g

∂z

〉
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Now, the notation for curl and divergence using the del operator makes more sense
and helps you remember how to compute them. In particular,

∇× F =

〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉

× 〈P, Q, R〉

= det





i j k
∂
∂x

∂

∂y
∂
∂z

P Q R





= (Ry −Qz)i + (Pz −Rx)j + (Qx − Py)k

∇ · F =

〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉

· 〈P, Q, R〉

=
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

7.3 Integrals of vector fields

If there is differentiation, there should be integration. For vector fields integration is
very interesting. For one thing you integrate vector fields only on lower dimensional
sets, that is on curves in R

2 and curves and surfaces in R
3. Well, let’s get on with it.

7.3.1 Line integrals

We begin by looking at integrating vector fields along curves. If you have a curve C in
R

3 and a vector field F = 〈P, Q, R〉, then the (line) integral of F over C is

∫

C

F ·T ds

In other words, we are not intro-
ducing a new integral. This one is
just the integral of a function along
a curve, where the function is the
tangential component of F at points
on the curve, that is the magnitude
of the action of F in the direction
of travel along the curve.

F T.T

F

C

Wait a minute, what was that about the direction of travel? Looking at the picture
the “direction of travel” appears to be from left to right, if we had gone the other
way, the vector T would be pointing to the left and F · T would be the negative of
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the component in the other direction, so that the way the curve is traversed makes a
difference in the value of the integral.

In order to straighten out this mess
we introduce the oriented curve,
which is a curve and a direction of
travel along the curve.

Initial point
Terminal point

.
.

The direction is indicated by arrows along the curve or by specifying a starting
point, the initial point, and the ending or terminal point of the curve.

So, the real definition of a line integral is the following

For an oriented curve C in R
3 and a vector field F = 〈P, Q, R〉, then the (line) integral

of F over C is
∫

C

F ·T ds

with the usual analogous definition in R
2.

If C is an oriented curve, the the same set of points traveled in the opposite direction
is denoted −C and

∫

−C

F ·T ds = −
∫

C

F ·T ds

So, what good is it. Well this should hold you for a bit. If the curve is the path
of a particle and the vector field is a force field, the line integral is the work done in
moving from the initial to the terminal point along the curve. In fact, you could say
the F ·T ds is the work done in moving through a point, the force acting on the particle
F ·T times the distance traveled ds.

There is another way of writing the line integral,

∫

C

P dx + Q dy + R dz

It is a little dangerous, because one is tempted to say things like
∫

C
(2x+y3) dx+2xy dy

has something to do with x2 + xy3 + xy2 but it doesn’t.
By the way, how do you calculate this thing? First you parameterize the curve with

r(t) = (x(t), y(t), z(t)). and then

• T = 1
|r′|r

′

• ds = |r′|dt, so that

• T ds = 1
|r′|r

′|r′|dt = r′ dt

• The initial point is r(a) for some a and the terminal point is r(b) for some b.
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and we have

∫

C

F ·T ds =

∫ b

a

F(t) · r′(t) dt =

∫ b

a

(

P
dx

dt
+ Q

dy

dt
+ R

dz

dt

)

dt

One should come up with a parameterization that draws the curve in the correct
direction. If you have r(t) with a ≤ t ≤ b that is backwards there are two ways to get
out of trouble. The “correct” way is to use the parameterization r(a + b− t), check it
out. The quick and dirty way is to use the one you have and change the sign of the
result.

In R
2 there is also a line integral of the normal component of F = 〈P, Q〉, which is

∫

C

F · n ds =

∫

C

−Q dx + P dy

What is happening is that if the tangent vector to the curve is T = 〈x′, y′〉/|r′|, then the
normal vector being used is 〈y′,−x′〉/|r′|. The reason for this choice will be discussed
later.

7.3.2 Surface integrals

Integrating vector fields over surfaces proceeds much the same as integrating over curves.
In particular, there is need for oriented surfaces. An oriented surface is a surface

in R
3 with a unit normal (perpendicular) vector chosen at each point so that it is

continuously defined as you move about the surface. This last condition means the
normal vector does not change direction abruptly. So, to orient a sphere you would
choose the normal that always points outward for one orientation or the always pointing
inward normal for the other.

Each surface has, then, two orientations, if S has one then −S has the other.
Or none! There are so-called non-orientable surfaces.

One “simple” one is the Möbius
strip. Take a belt and give it a
half twist and buckle it. You have a
closed band with a twist in it. Now
walk a normal vector around the
band when you get back to where
you started your normal will point
in the opposite direction from when
it began. Not good.

Ok, so we will restrict ourselves to orientable surfaces, there are plenty.
For an oriented surface S with normal vector n, and a vector field F, the (surface)

integral of F over S is
∫

S

F · n dS
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Again the integral is not new, it is the integral of a function over a surface, but the
function is the normal component of a vector field.

Why the normal component? Well, I could say it is a physics thing, which was
probably where it got its start. For example, if F is the velocity vector of a fluid flowing
through space, the F · n is the speed of the fluid through the surface S. I think it is
useful in physics because of what it does mathematically, which we’ll see in the next
chapter.

You calculate with a parameterization r(t, u) = (x(t, u), y(t, u), z(t, u)), for which

• n = 1
|rt×ru|rt × ru

• dS = |rt × ru|dA

• n dS = 1
|rt×ru|rt × ru|rt × ru| dA = rt × ru dA

• A region D in the parameter space that draws with r the surface S,

then
∫

S

F · n dS =

∫

D

F(t, u) · (rt × ru) dA

Of course, you should check that the parameterization has the proper orientation.
If not you can switch the parameters, that is replace (t, u) with (u, t) or change the sign
of the result.

Let’s take a quick look at the unit sphere centered at the origin in R
3. We use the

parameterization based on spherical coordinates, r(θ, φ) = (x, y, z) where

x = cos φ cos θ

y = cos φ sin θ

z = sin φ

for −π ≤ θ ≤ π and −π/2 ≤ φ ≤ π/2.

r

π/2

−π/2

π−π

n
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We have

rθ × rφ = cosφ〈cos φ cos θ, cosφ sin θ, sinφ〉
n = 〈cos φ cos θ, cos φ sin θ, sinφ〉

You might compare this parameterization with the one we had earlier in the chapter
“Algebra and Geometry - seriously”, the difference is that the order of the variables θ
and φ is reversed and so is the direction of the normal.
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7.3.3 Integration summary

We now have ten integrals for functions or vector fields. Here is a recap.

Functions
Integrating over a set of

1 dimension 2 dimensions 3 dimensions

R
∫ b

a
f(x) dx

R
2
∫

C
f(x, y) ds

∫

D
f(x, y) dA

R
3
∫

C
f(x, y, z) ds

∫

S
f(x, y, z) dS

∫

B
f(x, y, z) dV

Vector fields
Integrating over a set of

1 dimension 2 dimensions
R

2
∫

C
F ·T ds

∫

C
F · n ds

R
3
∫

C
F ·T ds

∫

S
F · n dS
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Chapter 8

The Fundamental Theorem of

Calculus

The Fundamental Theorem of one-variable Calculus says
If F is continuous on an open interval I , then

• for a in I ,

f(x) =

∫ x

a

F (t)dt

is an antiderivative for F on I , that is, f ′ = F ,

• if g is any antiderivative of F on I then, for any a and b in I ,

∫ b

a

F (x) dx = g(b)− g(a)

So, the first part tells you how to get antiderivatives from integrals and the second,
how to get integrals from antiderivatives. The first part is the most philosophically
important and the second part is the most practically useful.

To some extent we can summarize the whole thing with

∫ b

a

f ′(x) dx = f(b)− f(a)

OK, what would the higher dimensional analog be?

8.1 Antiderivatives reloaded

Suppose you have f : R
2 → R, and A and B points in R

2 and an oriented curve C from
A to B. Integrating the “derivative” of f along the curve would seem most naturally
to mean to calculate

∫

C

∇f ·T ds
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Parameterize the curve with r(t) = (x(t), y(t)), with r(a) = A and r(b) = B for
some a and b, and for convenience let h(t) = f(x(t), y(t)), then we have

∫

C

∇f ·T ds =

∫ b

a

(

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

)

dt

=

∫ b

a

h′(t) dt (Chain Rule)

= h(b)− h(a) (Fundamental Theorem of Calculus)

= f(B)− f(A)

And there you have it, a version of the Fundamental Theorem of Calculus in R
2.

The same approach produces the same result in R
3. Moreover, it wasn’t that difficult.

A curve is a one-dimensional set, we reduced the problem to a one variable calculation
with the parameterization and applied the one variable version of the Fundamental
Theorem of Calculus.

Wait a minute! This higher di-
mensional Fundamental Theorem
of Calculus says something remark-
able: the integral of the gradient of
a function from A to B doesn’t de-
pend on how you get from A to B
it is f(B)− f(A), period.

A

B

C

C*

We say that line integrals of the gradient are independent of path where that means
curves between the same two points, not just any curves.

The physics terms that a vector field is conservative means it is somebody’s gradient
comes from the field representing forces. A conservative force is one for which the work
done getting from one point to another does not depend on the path. It is a conservation
of energy thing. The function whose gradient is the force is called a potential function,
because the work is the change in potential energy in moving between the points.

Here is an example of perhaps the most important of these forces: gravity. According
to Newton the force of gravity is proportional to 1/r2 where r is the distance between
two objects attracting each other. So, if a mass M is at the origin and a mass m is at
(x, y, z) the gravitational attraction has magnitude

|F| ∝ 1

r2
=

1

x2 + y2 + z2

and acts in a direction pointing from m to M ,

u = − 〈x, y, z〉
|〈x, y, z〉|
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so that with G being the universal gravitational constant

F = − mMG

x2 + y2 + z2

〈x, y, z〉
|〈x, y, z〉| = −

mMG

(x2 + y2 + z2)
3
2

〈x, y, z〉

and with a little work you can get the potential function

φ(x, y, z) =
mMG

√

x2 + y2 + z2

Let’s go back to the general antiderivative problem in light of the first part of the
Fundamental Theorem of Calculus and see if we can build one using integrals.

Suppose F = 〈P, Q〉 is a vector field in R
2. Do the following.

• Pick (x0, y0) in R
2.

• For each (x, y) pick a curve from (x0, y0) to (x, y), call it C(x,y).

• Define

f(x, y) =

∫

C(x,y)

F ·T ds

then f should be an antiderivative of F. But, not all vector fields have antiderivatives,
so what can go wrong.

For one thing, f may not be well-defined, that is f(x, y) should depend only on
(x, y), but we had to choose a curve from (x0, y0) to (x, y). The value of the integral
may depend not just on (x, y) but on which curve we use. In other words, if the line
integrals of F are not independent of path, this approach will definitely not work.

If you do have path independence, then it does work!
The problem is to show that ∇f = F, so look at

fx(x, y) = lim
h→0

1

h
(f(x + h, y)− f(x, y))

= lim
h→0

1

h

(

∫

C(x+h,y)

F ·T ds−
∫

C(x,y)

F ·T ds

)

There is another way to get from (x0, y0) to (x+h, y), namely go from (x0, y0) to (x, y),
then from (x, y) to (x + h, y) using the parameteriztion r(t) = (x + th, y) which draws
the straight line segment between them for 0 ≤ t ≤ 1, call it Ch.

Now, since line integrals of F are independent of path,

∫

C(x+h,y)

F ·T ds =

∫

C(x,y)

F ·T ds +

∫

Ch

F ·T ds
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so that

fx(x, y) = lim
h→0

1

h

∫

Ch

F ·T ds

= lim
h→0

∫ 1

0

P (x + th, y) dt

= P (x, y)

Similarly fy = Q. Similarly in R
3.

One thing that has happened is that we have a condition that tells us when we have
an antiderivative, not just when we don’t, namely

F has antiderivatives⇐⇒ line integrals of F are independent of path.

The only problem is how in the world would you know that line integrals of some
vector field are independent of path?

We can simplify the problem a little. A closed curve is one whose initial and terminal
points are the same - a loop. If line integrals of a vector field are independent of path
then the integral of the vector field around a closed path will be zero, because it is
the same as going directly from a point on the curve to itself by not moving at all.
Moreover, if C and C∗ are curves from A to B, then C followed by −C∗ is a closed
curve, so that

∫

C

F ·T ds −
∫

C∗

F ·T ds = 0

In other words,

The integrals of F around closed curves are zero ⇐⇒ line integrals of F are path
independent ⇐⇒ F has antiderivatives.

Ok, we have reduced the problem from looking at all paths to looking only at closed
paths - doesn’t sound like much of improvement. But it is, as we are about to see.

8.2 Green’s Theorem

Let’s get to it.
Green’s Theorem1: If F = 〈P, Q〉 is defined on a region D in R

2, and P and Q have
continuous partial derivatives on D, then

∫

D

(Qx − Py) dA =

∫

∂D

Pdx + Qdy

1George Green, 1793-1841
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or
∫

D

curl(F̂) · k dA =

∫

∂D

F ·T ds

and
∫

D

div(F) dA =

∫

∂D

F · n ds

where ∂D is the boundary of D traversed so that D is on the left.

n
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

T

D

D

∂D is the geometrical boundary of D, ori-
ented so that all the signs in the integrals
are the way we want them. Recall also
that n in terms of a parameterization was
chosen to be 〈y′,−x′〉/|r′|. The reason for
that choice is so that the normal in this
situation points outward from D, which,
as before, ensures that all the signs in the
integrals are the way we want them.

So, what is this all about? It is, in fact, another version of the Fundamental The-
orem of Calculus. It says that integrals of derivatives of F over a set are completely
determined by values of F on the boundary of the set, which is the basic philosophy of
the Fundamental Theorem of Calculus.

I want to show you why this theorem is true, but perhaps before doing so, I should
show you why anyone would care that it is true.

For one thing, it solves a problem we left at the end of the last section, at least in
R

2. Suppose you have a vector field F = 〈P, Q〉 and Qx = Py. Suppose also you have a
closed curve C , then C encloses a region in R

2, call it D and either C or −C is ∂D, so
that

∫

C

P dx + Q dy = ±
∫

D

(Qx − Py)dA = 0

That is, Qx = Py implies that the integral around any closed curve of F is zero, so F

has antiderivatives.
Almost, there is a catch. The partial derivatives of P and Q must be continuous on

D the interior of the curve C . Recall

F(x, y) =

〈 −y

x2 + y2
,

x

x2 + y2

〉

then Qx = Py. The unit circle parameterized by r(t) = (cos t, sin t) for 0 ≤ t ≤ 2π is a
nice closed curve, and it doesn’t take much to show that the integral of F around the
circle is 2π, not zero. Green’s Theorem simply does not apply here. P and Q don’t
even exist at (0, 0) much less have continuous derivatives, and (0, 0) is in the region for
which the circle is the boundary.
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On the other hand, for F = 〈yexy, xexy〉, we have Qx = exy + xyexy = Py and
everything is continuous on all of R

2, so F has antiderivatives.
Interestingly enough, the geometry of the set you want an antiderivative on plays a

role in whether you can get one.
A set S in R

2 is simply connected means the region enclosed by any closed curve in
S is also in entirely S. Essentially, this simply means that S has no holes in it.

Recall that for

F(x, y) =

〈 −y

x2 + y2
,

x

x2 + y2

〉

We were able to find an antiderivative on the set S = {(x, y) : x > 0 or y 6= 0}, R
2

except for the negative x-axis. This set is simply connected. The domain of F is not.

So, our bottom line for antiderivatives in R
2 is

For a vector field F whose components have continuous partial derivatives on a simply
connected set S,

F has antiderivatives on S ⇐⇒ Qx = Py on S

I will leave other justification for Green to the physicists.

Let me return to the theorem itself. First there appear to three versions. The second
is just the first, with Qx − Py disguised by

curl(F̂) · k = curl(〈P, Q, 0〉) · 〈0, 0, 1〉

Third is just the first, where −Q is in for P and P is in for Q, so that substituting into
( )x − ( )y gives Px + Qy = div(F).

Finally, let me illustrate why the theorem is true using a convex set, D. We can
describe the top and bottom boundary as the graphs of functions, T and B. these func-
tions also parameterize the boundary of D. (x, B(x)) draws the bottom and (x, T (x))
the top. Note that as x goes from left to right, T draws the graph backwards from
the correct orientation for ∂D, so a sign change will be needed. We could also describe
the left and right sides using functions L and R and parameterize the boundary with
(L(y), y) which runs backwards and (R(y), y).
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a x b

c

d

y=T(x)

y=B(x)

x=L(y)

x=R(y)

D
D

y

So, we have

−
∫

D

Py(x, y) dA = −
∫ b

a

∫ T (x)

B(x)

Py(x, y) dy dx

= −
∫ b

a

(P (x, T (x))− P (x, B(x))) dx FTC!

= −
∫ b

a

P (x, T (x)) dx +

∫ b

a

P (x, B(x)) dx

=

∫

∂D

P dx

and
∫

D

Qx(x, y) dA =

∫ d

c

∫ R(y)

L(y)

Qx(x, y) dx dy

=

∫ d

c

(Q(R(y), y)−Q(L(y), y)) dy FTC!

=

∫

∂D

Q dy

combining the two gives Green’s Theorem.
For non-convex regions, just chop them up into convex regions. When calculating

the integrals for the pieces, you go across a cut in one direction on one piece and in the
opposite direction on the other piece, so the contributions to the integrals cancel each
other. Draw a picture.

This theorem is a Fundamental Theorem of Calculus because it says the integral of
derivatives of F on a set is determined by the values of F on the boundary of the set,
and because the one variable Fundamental Theorem is the key step in its proof.
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8.3 Stokes’ Theorem

If you liked Green, you’ll love Stokes.

Stokes’ Theorem2: If F is a vector field on R
3 whose components have continuous

partial derivatives on a set containing a surface S, then
∫

S

∇× F · n dS =

∫

∂S

F ·T ds

Fundamental Theorem of Calculus philosophy is in place. The integral of derivatives
of F on a set is determined entirely be the values of F on the boundary of the set.

What is ∂S? It is the geometrical
boundary of S, a curve, traversed
so that if you standing parallel to
the normal vector to the surface the
surface is on your left.

S

S

n

T

We can use this theorem on the antiderivative problem in R
3 essentially the same

way we used Green’s Theorem in R
2. Suppose F is a vector field with ∇ × F = 0.

Suppose C is a closed curve that C or −C is the boundary of a surface S. In general, it
will happen, think of a wire loop dipped in soap. If F has continuous partial derivatives
on and around the surface, then

∫

C
F ·T ds = ±

∫

S
∇× F · n dS = 0.

A set B in R
3 where every closed curve in B is the boundary of a surface in B

is simply connected. In R
3 a simply connected set can have holes as long as they are

bounded.

Again, we have

For a vector field F whose components have continuous partial derivatives on a simply
connected set B in R

3,
F has antiderivatives on B ⇐⇒ ∇× F = 0 on B

Now, why is Stokes’ Theorem true? It is not that difficult to believe. The second
form of Green’s Theorem is actually Stokes’ Theorem with the set D in R

2, viewed
as a surface in the x-y plane in R

3 with normal vector k. To prove the theorem, you
parameterize the surface and pull the problem into the parameter space in R

2 and apply
Green’s Theorem. So, the FTC philosophy is embedded in the theorem in the form of
Green’s Theorem. Here’s how it works.

Suppose, the set D is the part of the domain of the parameterization r(t, u) =
(x, y, z) that draws the surface S. Parameterizing the boundary of D will also param-
eterize the boundary of S.

2Sir George Gabriel Stokes, 1819-1903
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So,

∫

∂S

Pdx + Qdy + Rdz =

∫

∂D

P (xtdt + xudu) + Q(ytdt + yudu) + R(ztdt + zudu)

=

∫

∂D

(Pxt + Qyt + Rzt)dt + (Pxu + Qyu + Rzu)du

(Green’s Theorem) =

∫

D

((Pxu + Qyu + Rzu)t − (Pxt + Qyt + Rzt)u) dA

=

∫

D

(xuPt − xtPu + yuQt − ytQu + zuRt − ztRu) dA

(Chain Rule) =

∫

D

((Pxxt + Pyyt + Pzzt)xu − (Pxxu + Pyyu + Pzzu)xt +

(Qxxt + Qyyt + Qzzt)yu − (Qxxu + Qyyu + Qzzu)yt +

(Rxxt + Ryyt + Rzzt)zu − (Rxxu + Ryyu + Rzzu)zt) dA

=

∫

D

(Ry −Qz)(ytzu − yuzt) + (Pz −Rx)(xuzt − xtzu) +

(Qx − Py)(xtyu − xuyt) dA

=

∫

D

〈Ry −Qz, Pz −Rx, Qx − Py〉 · 〈xt, yt, zt〉 × 〈xu, yu, zu〉 dA

=

∫

S

∇× F · n dS

So, Stokes’ Theorem is done. The main reason for giving you the proof is to show
how Stokes’ Theorem, follows from Green’s Theorem in two variables, which follows
from the Fundamental Theorem of Calculus in one variable.

8.4 Gauss’ Theorem

Also known as the Divergence Theorem.

Gauss’ Theorem3: If F has continuous partial derivatives on a solid B, then

∫

B

div(F) dV =

∫

∂B

F · n dS

The ∂B is the outer skin of the solid, oriented by the normal pointing away from
the solid, the so-called outward pointing normal.

Besides propagating the Fundamental Theorem philosophy and being proved by it,
which we will see in a bit, this theorem does things like relate the flow of a fluid across
the boundary of a region to the divergence of the flow in the region.

3Karl Friedrich Gauss, 1777-1855
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Mathematically speaking, Gauss’ Theorem says things like, if F = curl(G), then the
integral of F over a closed surface (no boundary, like the sphere) is zero.

It is also the R
3 version of the third form of Green’s Theorem.

To see why the theorem is true, suppose that the region B is convex, then the top
and bottom can be described explicitly by some functions, z = T (x, y) and z = B(x, y).
Use these functions to define parameterizations, (x, y, T (x, y)) whose normal vector is
chosen to be 〈−Tx,−Ty, 1〉 which is outward, and (x, y, B(x, y)) whose normal vector is
〈−Bx,−By, 1〉, which points inward, so change the sign.

Let me call D = {(x, y) : (x, y, z) is in B for some z}. We have

∫

B

Rz dV =

∫

D

∫ T (x,y)

B(x,y)

Rz dz dA

=

∫

D

(R(x, y, T (x, y))− R(x, y, B(x, y))) dA FTC

=

∫

∂B

< 0, 0, R > ·n dS

Similarly,
∫

B
Qy dV =

∫

∂B
〈0, Q, 0〉 · n dS and

∫

B
Px dV =

∫

∂B
〈P, 0, 0〉 · n dS, so that

adding them up finishes the job.

8.5 All of them

We have the following versions of the Fundamental Theorem of Calculus.

Integrating over a set of
1 dimension 2 dimensions 3 dimensions

R
∫ b

a
f ′(x) dx = f(b)− f(a)

R
2
∫

C
∇f ·T ds = f(B)− f(A)

∫

D
(Qx − Py) dA =

∫

∂D
Pdx + Qdy

∫

D
∇× F̂ · k dA =

∫

∂D
F ·T dS

∫

D
∇ · F dA =

∫

∂D
F · n ds

R
3
∫

C
∇f ·T ds = f(B)− f(A)

∫

S
∇×F · n dS =

∫

∂S
F ·T ds

∫

B
∇ ·F dV =

∫

∂B
F · n dS
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