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1. Introduction

In Where Have You Gone Infinitesimals I described how intuitive notions of
infinitesimals, the basis for calculus in the seventeenth century, were related
to tensors, the ultimate calculus of the twentieth century. I bemoaned the
fact that abstraction and rigor had replaced intuition and informality. I also
mentioned at the end of the paper that I used infinitesimals all the time
suggesting that they were actually alive and well. Alive and well may be
stretching it, but useful in all their intuitive glory is not. Let me tell you
how they can be used. Along the way it will get a little weird, but that will
be a temporary state, I hope.

This paper is a sequel to Where Have You Gone Infinitesimals. It may
be worth your while to read the first two and a half pages of that paper,1

through the paragraph ending “I rest my case.” If I need to refer to the
paper again, I will call it WHYGI.

The way I use infinitesimals in teaching calculus is in integration. In one
variable calculus, you have a function f and an interval [a, b] and you define
the Riemann integral

b

a
f(x) dx

I tell people, you can think of f(x) as the height of an infinitesimally thin
rectangle and dx as its width, so that f(x) dx is its area. The integral just
adds up these infinitesimal areas to give the total area under the graph of f
over the interval [a, b].

Of course, then you calculate 1

−1
x dx and get zero! So, what is going on?

The fact of the matter is that the integral is not built to calculate area, it
is built to build antiderivatives, that is, to solve the problem: given f , find
F , so that F

�
= f . That the integral does these things is the content of the

Fundamental Theorem of Calculus, which can be described in two ways.

• Recovering total change from instantaneous rates of change:
b

a

dy

dx
dx = y(b) − y(a) =

�
y for

�
x = b − a, and

• Building antiderivatives: F (x) =
x

a
f(t) dt is an antiderivative of f .

These things are what I tell people about integration now, but if I lived in
the seventeenth century I would do it �������
	��
� tly. The Riemann integral as an
adding up of infinitesimal quantities, I would not need to change. Recovering

1www.southalabama.edu/mathstat/personal pages/windham/
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change requires only a modification of the phraseology, but little else. In
WHYGI I observed that ���
���
	���� tials are a primary source for infinitesimals,
that is, if y is a variable, the �������
	��
� tial of y is the infinitesimal change in y
per infinitesimal change in x, given by

dy =
dy

dx
dx

so that, recovering the total change in y is simply b
a dy = b

a
dy

dx
dx = y(b) −

y(a) =
�

y. The antiderivative problem looks a good deal ���
����	���� t from my
modern formulation. It becomes given f(x) dx, find y, so that dy = f(x) dx.

What I really want to tell you is how to do these things in Rn, but
not the usual way people are told in Calculus III, where n is never bigger
than three, ten ���
����	���� t integrals are defined, five ���
����	���� t theorems that are
really the Fundamental Theorem of Calculus are given, and three ���
���
	���� t
antiderivative problems are discussed. Or, the way people are told in more
advanced mathematics where one finds exterior algebra, �������
	��
� tial forms,
integration on chains, and something called Stokes’ Theorem. I will tell
you how to do both of these, from a reasonably elementary approach using
infinitesimals. We begin with the Riemann integral.

2. Riemann again

Consider, if you will, the geometry of a point. That won’t take long you say.
Ah, but it is not a simple as you think. In R3, for instance, a point can be
a three dimensional object, if it is part of a solid, a two dimensional object,
as part of a surface, a one dimensional object, as part of a curve, and a zero
dimensional object in its own right. When you integrate a function over a
set, you evaluate the function at a point, multiply by the infinitesimal size
of the point and add up the results for each point in the set. The size of the
point depends on the dimension of the set you are integrating over. So, how
big is a point?

The good thing about a point is that its size is infinitesimal, so that you
can throw away higher order terms when you calculate the size. What that
really means is that you can think of a point as a box with straight sides,
not necessarily perpendicular to each other, but at least parallel.

So, let me leave the infinitesimal world for a minute and look at the
volume of a p dimensional box in Rn. I should call it a parallelepiped, but I
will just call it a box. What you call the size depends on its dimension, but
I will call it volume for the moment. So, let me get it over with. If b1, . . . , bp
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are vectors in Rn, letting B = [b1 . . . bp], the n×p matrix with the vectors as
columns, the volume of the p dimensional box obtained by using the vectors
as adjacent edges, vol(B), is

vol(B) = det(BT B) (1)

In R3 for p = 1 the box is a single vector. The equation says that the volume
of the box is the length of the vector, |b1|. For p = 2, the equation gives

(|b1|
2|b2|

2 − (b1 · b2)
2)

1

2 = |b1||b2| sin � where � is the angle between the two
vectors, that is, the length of the base times the height. Finally, for p = 3,
both sides are just | det(B)|. If you have not seen this calculation before,
it really is what it should be. The equation says that the volume of a p
dimensional box is the volume of its p − 1 dimensional base times its height.
I leave that as an exercise in linear algebra to verify.

Now back to the point - in R3. A p dimensional set is made up of p
dimensional points, at least, that is how we are going to think about it.
So, a curve is a one dimensional set and the size of a point would be its
length. The most natural way to quantitatively describe a curve is with a
parameterization (x(t), y(t), z(t)) - a description of a one dimensional object
by one parameter, t, that tells you how to draw it. Drawing one point on
the curve is done with an infinitesimal displacement dt that produces an
infinitesimal displacement vector along the curve

�
dx, dy, dz � =

dx

dt
dt,

dy

dt
dt,

dz

dt
dt =

dx

dt
,
dy

dt
,
dz

dt
dt

so that the length of the point according to (1) is

ds =
dx

dt

2

+
dy

dt

2

+
dz

dt

2

dt

A surface can be dealt with in an entirely analogous manner. Draw the
surface using a parameterization (x(u, v), y(u, v), z(u, v)), then infinitesimal
displacements in each of the parameters produce an infinitesimal displace-
ment along the point on the surface

�
dx, dy, dz � =

�
x�
u

du +

�
x�
v

dv,

�
y�
u

du +

�
y�
v

dv,

�
z�
u

du +

�
z�
v

dv

=

�
x�
u

,

�
y�
u

,

�
z�
u

du +

�
x�
v
,

�
y�
v
,

�
z�
v

dv (2)
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suggesting that the point is a two dimensional box whose sides are the two
infinitesimal displacement vectors in (2), and that the area of the point dA
according to (1) is the length of the cross product of the displacements.

Finally, a three dimensional point would have volume dV = dxdydz the
product of the lengths of its sides,

�
dx, 0, 0 � , � 0, dy, 0 � , and

�
0, 0, dz � . Note

that (1) still works. In fact, it works if you draw the point with a three dimen-
sional parameterization (x(u, v, w), y(u, v, w), z(u, v, w)), which in context of
integration we call a change of variables (sound familiar?). Using displace-
ments in the parameters again, a displacement across the point is the sum
of three vectors, the sides of a three dimensional box, with volume2

dV = det

�
x�
u

�
x�
v

�
x�
w�

y�
u

�
y�
v

�
y�
w�

z�
u

�
z�
v

�
z�
w

dudvdw

That, dear reader, is the geometry of a point in R3, at least with regard to
its size.

A general formula for the volume of a p dimensional point in Rn, is now
within our grasp. You draw the point with a parameterization, decompose
the vector

�
dx1, . . . , dxn � into a linear combination of p vectors each of which

is multiplied by a single dui and apply (1) to those vectors to get an infinites-
imal amount of volume dV = vol(J) du1 . . . dup, the p dimensional volume of
the point, where

J =

�
xi�
uj

is the n × p Jacobian matrix of the parameterization.
As I have already said, the geometry of size is used in integration of

functions. In general, it is simply the following.
For an integral over an n dimensional set in Rn, use the Riemann integral.
For a p dimensional set, S, parameterize the set using p variables. A

p dimensional point is the box obtained from displacements in each of the
parameters and its volume dV is computed by (1). The integral of a function
f over S becomes the function in terms of the parameters, times the volume

2I have used the standard but unfortunate notation ds, dA, and dV for infinitesimal
amounts of size. The notation is unfortunate because it suggests a ������������ tial, an infinites-

imal change in a variable and that is definitely not the case here. If A is a variable that

represents area, say A = xy, then dA = ydx + xdy is the change in area due to a change
in the sides. On the other hand, dA = dxdy is not a change in area but an infinitesimal

amount of area. We have a name for this, it is called an abuse of the notation. But, this

one has been going on so long, most people don’t even know they are being abused.
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of a point in Rn in terms of the parameters, added up over the set in the
parameter space that draws S in Rn, S f(x) dV .

I can even take it further. A point in its own right is a zero dimensional
set. I define the integral of a function f over a point x to be f(x). BAM! If
you are having fun now, wait till you see what comes next.

3. Taking it up a notch or two

Let’s take a look at some happenings in R2. The first happening is recovering
change. If w is a variable then dw =

�
w�
x

dx+
�
w�
y

dy is the infinitesimal change
in w due to infinitesimal changes in x and y. If you want to recover the total
change in w as you move from point A to point B, then, first of all you would
need to describe how you get from A to B. That’s easy enough you draw
a curve using a parameterization, so that for the parameter going through
the interval [a, b], the curve is drawn from A to B. The variable w along
the curve is now a function of t, so that the logical way to recover the total
change in w would be

b

a

dw

dt
dt = w(B) − w(A)

which using the chain rule can be written

b

a

�
w�
x

dx

dt
+

�
w�
y

dy

dt
dt

We get two things from these observations beyond the recovery of change.
First, the integral suggests a way of integrating any infinitesimal ! = P dx+
Q dy along a curve C from A to B, namely, parameterize the curve and define

C
! =

b

a
P

dx

dt
+ Q

dy

dt
dt

It might occur to you that drawing a curve from A to B is somehow ���
���
	���� t
from drawing the same curve from B to A. In fact, it is �������
	��
� t and the �
���
"$#
on the integral is to change the sign. Other than that, the parameterization
does not matter, as a change of variables in the integral would show. When
you say which end of the curve is the beginning point and which is the end
point, you have chosen what has called an orientation for the curve. Actually
you can specify an orientation by simply choosing the parameterization.
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The other thing we get is just a reiteration. I can say that the Funda-
mental Theorem of Calculus can be written

C
dw = w(B) − w(A) =

{B}
w −

{A}
w

Big deal, but humor me. Let me read it this way: The value an integral of
the ���
����	���� tial of a variable on the set is determined by the values of the
variable on the boundary of the set (the boundary of the curve being its
end points). One amazing consequence of this statement is that is says the
total change in w in going from A to B does not matter how you get from
A to B. That is amazing, so the question is are there other versions of the
philosophy that “the values of some kind integral of a �������
	��
� tial over a set
are determined by the values of what it is the ���
���
	���� tial of on the boundary
of the set.” Well, watch this.

Before you do let me simplify the notation a bit. We are about to be
bombarded by partial derivatives, so, let me use the other notation, namely
wx =

�
w�
x

and save a lot of paper and typing.
Now watch. Suppose I have an infinitesimal ! = P dx + Q dy consider

the set C = {(x, y) : 0 % x % 1, 0 % y % 1}, the unit square in R2, then the
boundary of the square I can parameterize easily as curves using u and v. In
particular, if I call the boundary

�
C, then

�
C
! =

1

0

P (x, 0) dx +
1

0

Q(1, y) dy −
1

0

P (x, 1) dx −
1

0

Q(0, y) dy

which parameterizes the boundary of the square counterclockwise. The minus
signs have the ������"$# of reversing the integral so that direction of travel around
the boundary is continuous. Continuing

�
C
! =

1

0

(Q(1, y) − Q(0, y)) dy −
1

0

(P (x, 1) − P (x, 0)) dx

=
1

0

1

0

Qx(x, y)dx dy −
1

0

1

0

Py(x, y)dy dx

=
C
(Qx − Py) dA

where I have used the one-variable Fundamental Theorem of Calculus. This
result fits the basic philosophy of integrating some derivatives of something
over a set being determined by the values of the something on the boundary
of the set. Of course the unit square is a pretty simple set, but that is not a
problem.
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If D is the image of the unit square using a function (u, v) & (x, y), then�
D would be the image of

�
C, usually, anyway. Suppose ! = P dx + Q dy

is defined on D. Since, dx = xu du + xv dv and dy = yu du + yv dv, we have
! = P dx + Q dy = (Pxu + Qyu) du + (Pxv + Qyv) dv, so that,

�
D
! = �

C
(Pxu + Qyu) du + (Pxv + Qyv) dv

=
1

0

1

0

((Pxv + Qyv)u − (Pxu + Qyu)v) dudv

=
1

0

1

0

(Qx − Py)(xuyv − xvyu) dudv (3)

The last line looks very much like D(Qx − Py) dA after a change of variables
from (x, y) to (u, v), except that dA = |xuyv − xvyu| dudv. Some absolute
value bars seem to be missing. To get out of this gracefully I need to make
a long-winded, but fascinating digression.

In R2, take two infinitesimals, ' = a1 dx + a2 dy and ( = b1 dx + b2 dy, at
the point (x, y). An algebraically natural way of multiplying them together
could begin something like this.

')( = (a1 dx + a2 dy)(b1 dx + b2 dy)

= a1b1 dxdx + a1b2 dxdy + b1a2 dydx + a2b2 dydy

The second line in the calculation assumes that the multiplication is distribu-
tive and commutes with the co �
*+"
�
�
� ts, or put another way, it is linear in
each of the pieces, ' (b1 dx + b2 dy) = b1 ' dx + b2 ' dy. The next step would
be to simplify. One perfectly reasonable way to simplify would be

'�( = a1b1 dx2 + (a1b2 + b1a2) dxdy + a2b2 dy2

but in doing so we have assumed that dydx = dxdy, that is, the multipli-
cation is commutative. I tacitly made that assumption when I said things
like dA = dxdy when talking about the Riemann integral. I want to explore
exactly the opposite assumption. I want to assume that the multiplication
is anticommutative, that is, dydx = −dxdy. Anticommutativity implies that
dxdx = −dxdx, so that dxdx = dydy = 0. Now simplify using the anticom-
mutativity and you get

')( = (a1b2 − a2b1) dxdy
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That’s interesting. It will come as no surprise that this is not my idea. This
multiplication has a name, the exterior product, and even a symbol '-,.( to
distinguish it from assuming commutativity. So, we write

'/,0( = (a1b2 − b1a2) dx , dy

It also looks like we have created a new kind of infinitesimal, a “second
order” infinitesimal, 1 = c dx , dy, and we have. There would be no third
order infinitesimal in R2. If we follow the rules, a third order infinitesimal
built from dx and dy, would always have at least one of them repeated, so
would be zero.

Now back to (3). We could define for a second order ���
����	���� tial 1 =
g dx , dy an integral,

D
1 =

D
g dx , dy =

C
g(xuyv − xvyu)dudv

and all we would have to do to remember how to calculate it is to substitute
xu du + xv dv for dx, and yu du + yv dv for dy and integrate the co ��*0"������ t of
the du , dv over C using the ordinary Riemann integral. I gets even better.
Since dP = Px dx + Py dy and dQ = Qx dx + Qy dy, we have using exterior
arithmetic

dP , dx + dQ , dy = (Px dx + Py dy) , dx + (Qx dx + Qy dy) , dy

= (Qy − Px)dx , dy

So, for a first order infinitesimal ! = P dx + Q dy define the 2
3�465�7 ential of !
to be 89! = dP , dx + dQ , dy and (3) becomes the following Fundamental
Theorem of Calculus

D
8:! = �

D
!

This is so much fun, let’s do it again, except this time instead of drawing
a set in R2 with the unit square, draw a 2-dimensional surface D in R3.
We could call the boundary of

�
D the image of

�
C. The orientation

�
D is

determined by the counter-clockwise orientation of
�
C.

If you have an infinitesimal ! = P dx+Q dy+Rdz then the technique for
integrating along an oriented curve in R2 generalizes to integrating over an
oriented curves in R3 in the obvious way.3 All that changes in first line of (3)

3In fact, in Rn we can define for ; = wi dxi and an oriented curve c the integral of

omega along c to be
c
; =

b

a
wi

dxi

dt
dt where t is the parameter of a parameterization

that draws the curve in the direction defined by the orientation.
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is that we have Pxu +Qyu +Rzu instead of Pxu +Qyu and Pxv +Qyv +Rzv

instead of Pxv + Qyv. The bottom line becomes

�
D
! =

1

0

1

0

(Qx−Py)(xuyv−xvyu)+(Rx−Pz)(xuzv−xvzu)+(Ry−Qz)(yuzv−yvzu) dudv

which is not nearly as bad as it looks if we do exterior arithmetic in R3

exactly as we did in in R2.
In particular, a second order infinitesimal in R3 is ( = L dx , dy+M dx ,

dz + N dy , dz, the the integral of ( over D is defined to be

D
( =

1

0

1

0

L(xuyv − xvyu) + M(xuzv − xvzu) + N(yuzv − yvzu) dudv (4)

which is easy to remember by just substituting for dx, dy, and dz, the ex-
pressions in terms of du and dv and simplifying with exterior arithmetic.
Moreover, defining 89! = dP , dx + dQ , dz + dR , dz as usual, (4) becomes

D
8:! = �

D
!

yet another Fundamental Theorem of Calculus.
We have a pattern here. Before I spell it out in all its glory let me do

one more example, except that I will use a famous mathematical technique.
Write down the answer and see if there is a question to go with it.

We have first and second order infinitesimals in R3, what about third
order infinitesimals? Why not. They are simple, ! = w dx , dy , dz. The
simplicity follows from the anticommutativity rule, which leads to the fact
that if you multiply three of dx, dy, and dz together, then the result would
be zero if any two are the same and ± dx , dy , dz otherwise. But, that is
it. A fourth or higher order would be zero since at least one of dx, dy, or dz
would appear more than once.

We have the ���
����	��
� tial of a variable and the ���
����	��
� tial of a first order
infinitesimal, what about ���
����	���� tials for the higher order infinitesimals?
Why not. For ! = L dx , dy + M dx , dz + N dy , dz let

89! = dL , dx , dy + dM , dx , dz + dN , dy , dz

= (Lz − My + Nx) dx , dy , dz

For higher order infinitesimals the ���
����	��
� tial would be zero.
Integrating third order �������
	��
� tials over three dimensional sets should go

this way. Suppose D is a three dimensional set in R3, that is the image of
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a function (u, v, w) & (x, y, z) defined on the unit cube C = {(u, v, w) : 0 %
u, v, w % 1}, then

�
D is the image of

�
C. Since, dx = xu du+xv dv +xw dw,

and similarly for dy and dz,

dx , dy , dz = det
xu xv xw

yu yv yw

zu zv zw

du , dv , dw

so that

D
! =

D
w dx , dy , dz =

1

0

1

0

1

0

w det
xu xv xw

yu yv yw

zu zv zw

dudvdw

So, what is the Fundamental Theorem of Calculus? That’s easy.

D
8:! = �

D
!

but what of that calculation do I not know how to do? Not much, but
something. Integrating over

�
D is done by integrating over the six faces of

C, but these six integrals must be combined so that the everything fits when
I use the one variable Fundamental Theorem of Calculus. It boils down to
picking which ones should be positive and which negative and I am not going
to tell you how to do it - yet. I am not being sadistic, I am sparing you a
great mess that is much easier to describe in general than in this special case
and a general description is the next step. The fact of the matter is that
there is a theorem.

4. The big picture

Suppose Rn has a coordinate system with points described by (x1, . . . , xn)
and dxi is an infinitesimal change in the coordinate xi, then a first order

infinitesimal is ! = widxi where wi is a variable measuring an amount per
unit change in xi.

For p > 1 a p-th order infinitesimal in Rn is a formal sum

w ! 1 , . . . ,<! p

where the co ��*0"������ ts w are variables and ! 1, . . . , ! p are any first order in-
finitesimals. The sums are manipulated with the following basic rules of
exterior arithmetic.
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• (a ! + b = ) ,<! 2 , . . . ,<! p = a !>,0! 2 , . . . ,0! p + b =+,<! 2 , . . . ,<! p

• ! 1 , . . . ,<! p = 0, if any two of the ! i’s are the same

• ! 1 , . . . ,<! p changes sign if any two of the ! i’s are interchanged

A little thought will show you that these rules say ! 1 , . . . ,?! p is linear in
each factor and that any p-th order infinitesimal is a linear combination of
the infinitesimals dxi1 , . . . , dxip where 1 % i1 < . . . < ip % n. In fact this
observation is so useful I will streamline the notation for it. Denote by I a
p-tuple of indices (i1, i2, . . . , ip) where 1 % i1 < i2 < . . . < ip % n. There are
(n

p) = n!/(p!(n − p)!) possibilities. Also, let dxI = dxi1 , . . . , xip . With this
notation a p-th order infinitesimal can be written

! = wI dxI

All we have really done here is concoct a slick way of calculating and
manipulating determinants. In fact for ! j = wijdxi we have ! 1 , . . . ,@! p =

wIdxI where the co ��*+"
�
�
� t wI is the determinant of the p × p sub-matrix
obtained from rows i1, . . . , ip of the n × p matrix W = [wij]. This fact is
not hard to believe if you think about some of the famous properties of the
determinant. It is linear in each of the columns or rows, zero if two columns
or rows are the same, and changes sign if you interchange two columns or
rows - which are exactly the basic rules of exterior arithmetic.

Finally, we finish AB� the arithmetic by defining a multiplication of a p-th
order infinitesimal ! = wIdxI and a q-th order infinitesimal = = sJdxJ

to be
!C,D= = wIsJdxI , dxJ

The multiplication acts exactly like a multiplication should except that it is
not commutative. In fact, =+,<! = (−1)pq !>,E= .

Now for the calculus of infinitesimals.F �
����	��
� tiation is easy enough. The 2
3�465�7 ential of a variable w is what
it always has been, dw =

�
w�
xi

dxi and describes the infinitesimal change in
w due to infinitesimal change in the xi’s. The 2
3�465�7 ential of a p-th order
infinitesimal ! = wI dxI is

89! = dwI , dxI

So, one could say it is an infinitesimal change in ! due to infinitesimal changes
in its co �
*+"������ ts. For convenience I will make statements for p-th order
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infinitesimals that will make sense for variables if you use p = 0 in the
statement. In particular, a 0-th order infinitesimal is a variable.

Naturally, you can obtain the rules of the game for manipulating the
���
���
	���� tial operation. If ' and ( are p-th order infinitesimals, then d( ' +( ) =
8G' + 89( and if 1 is a q-th order infinitesimal, then d( 'H,I1 ) = 8G'H,I1 +(−1)p 'H,
891 .

Integration will come as no surprise. If D in Rn is a p-dimensional surface
parameterized by a function of parameters u1, . . . , up defined on the unit cube
Cp = {(u1, . . . , up) : 0 % u1, . . . , up % 1} and ! is a p-th order infinitesimal,

then substitute i

�
xj�
ui

dui for dxj in ! and simplify to get w du1 , . . . , up the
resulting p-th order infinitesimal on Cp, then

D
! =

1

0

. . .
1

0

w(u1, . . . , up)du1 . . . dup

If D is the union of a finite number of such sets, D1, . . . , Dk, that overlap
only on sets of dimension less than p, then D ! = Di

! . Finally, if w is a
0-th order infinitesimal, that is a variable, and D = {x} is a 0-dimensional
set, that is a point, the D w is defined to be w(x) as I have already done.

A Fundamental Theorem of Calculus? Of course, it is

D
8:! = �

D
!

where all I have to tell you is how to integrate over
�
Cp+1 since it draws

�
D.

Just to keep it simple let me look a Cp instead. The p dimensional cube Cp

has 2p faces that are copies of Cp−1. They can be parameterized using p − 1
of the ui’s at a time as follows. For i = 1, . . . , p and ' = 0 or 1, let

CJLK M = {(u1, . . . , ui−1, ' , ui+1, . . . , up) in Cp}

then

�
C
! = (−1)i+M

C NPO Q !
Vóila!

For what it’s worth we can pose an antiderivative problem as well. As a
matter of fact it is worth a great deal, but I’ll explain the deal later. The
antiderivative problem is:

Given a p-th order infinitesimal ! , find a (p−1)-st order infinites-
imal = so that 8R= = ! .
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In R the problem always has a solution, that is what the Fundamental The-
orem of Calculus says. But for Rn, in general it does not. In particular for a
p-th order infinitesimal d( 8:! ) = 0. Just look at p = 0 and you will see that
the result is just a statement of the equality of mixed partial derivatives. The
result follows for p > 0, since the �������
	��
� tial of an infinitesimal is determined
by the �������
	��
� tials of its co �
*+"
�
�
� ts. So, if 89!TS= 0, then ! is not somebody’s
���
���
	���� tial.

On the other hand, if 8:! = 0 on a suitably nice set like an open ball in
Rn or Rn itself, then it is somebody’s ���
����	���� tial. In fact you can even write
a formula for the solution, but it is so disgusting that I refer you to Michael
Spivak’s Calculus on Manifolds for the details.

Well, that is the big picture.
There are a couple of things I need to confess. All of this has been around

for many years. People do not use the term p-th order infinitesimal, they
say p-th order ���
����	��
� tial form. I do not like the term because it suggests
that you have the ���
����	���� tial of something, but you may not. Those people
call what I have called the �������
	��
� tial the exterior derivative, so they are not
confused, at least among themselves.

The purists among you are no doubt disgusted with me completely ig-
noring hypotheses and would claim that much of what I said is not true. So,
the hypotheses are whatever it takes to make true what should be true.

There is a problem with what are called non-orientable sets. An example
is the Möbius strip, a two dimensional surface in R3 drawn with the unit
square by x = cos(2U u)(1+(v− 1

2
) cos(U u)), y = sin(2U u)(1+(v− 1

2
) cos(U v)),

and z = (v− 1

2
) sin(U u). Essentially you glue opposite sides of the unit square

together after you give it a half-twist. The problem is that if you want to
integrate a second order infinitesimal, say dx , dy then you are faced with
the embarrassing fact that dx , dy = U du , dv and dx , dy = 3U du , dv at the
same point, namely (1,0,0). You get the first answer when you draw the point
with u = 0 and v = 1

2
and the second when you draw it again with u = 1

and v = 1

2
. So, you should only integrate over orientable surfaces, which

essentially means you do not get �������
	��
� t values for the same infinitesimal
at the same point on the surface. The details are a bit technical but the
description of an orientable set can be made precise, some other time.

I have one more thing to do here - for the record. I need to bring these
infinitesimals into the modern world.

F �
����	��
� tial forms fit into the modern
world mathematically, if not intuitively. A p-th order ���
���
	���� tial form ! is
nothing more than a type (0, p) tensor4 with one additional property. It is

4To get a clue about what tensors are, go to WHYGI.

13



Infinitesimals Vector fields Infinitesimals Vector fields
Linear Linear dw V w (gradient)

combinations combinations
'/,0( a × b 8R' curl a
'/,EW
( a · b d W�' div a

D ! Iterated integrals D 89! = �
D ! Green’s Theorem

Line integrals Stokes’ Theorem
Surface integrals Gauss’ Theorem

Table 1: Multivariable calculus in a nutshell

completely antisymmetric, that is, for tangent vectors V1, . . . , Vp,

! (V1, . . . , Vi, . . . , Vj, . . . , Vp) = −! (V1, . . . , Vj, . . . , Vi, . . . , Vp)

for all i and j. The antisymmetry gives you the anticommutativity and that’s
all it takes to get the ball rolling.

The previous section was meant to show you how one might come upon
this big picture. The next section tells you how it relates to the picture
everyone sees.

5. Calculus III

So, how does this big picture relate to what we do in multivariable calculus
courses? The Riemann integral of a function over a p-dimensional is defined
the same way in both.

For the rest, look in R3. In the calculus course you talk about variables
(functions) and vector fields. Suppose w is a variable, and a =

�
a1, a2, a3 �

and b =
�
b1, b2, b3 � are vector fields. From a vector field you can build two

infinitesimals, that is, from a you get ' = a1 dx + a2 dy + a3 dz and WX' =
a1 dy , dz+a2 dz , dx+a3 dx , dy. With these associations you have Table 1.

By the way, the formula d( 89! ) = 0, includes curl( V w) = 0 and div(curl a) =
0, as well.

In fact, I have the impression that things like the curl and divergence and
surface integrals were built to have a Fundamental Theorem of Calculus. For
example, how do you explain what the curl means? You look at a limit
something like this. A fluid is flowing through space and you integrate its
velocity vector around a circle of radius r to see how the fluid is circulating.
Then apply Stokes’ Theorem using the disc that the circle encloses, divide
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the integral over the disc by its area, let r go to zero and out pops the curl
as a measure of the circulation per unit area. It is a vector, so that it has
some direction associated to it that allows you to determine the axis about
which the circulation is the greatest. It would be interesting to know which
came first, Stokes’ Theorem or the curl. Let me know what you discover.

6. Infinitesimals reloaded

Vectors fields, gradients and curls, and so on, have well-established inter-
pretations in the real world and students need to know about them. What
real world interpretations are there for higher order infinitesimals and their
���
���
	���� tials. To put it another way, if the people in the seventeenth century
had had them, would they have been able to use them in a natural way to un-
derstand the world around them. When I started writing this paper, I think
I had in mind that I wanted to revive the intuitive appeal of infinitesimal
quantities. So, here is my attempt to do so.

We have two slightly �������
	��
� t notions of infinitesimal. The first is the
function times the volume element and the second is the ���
����	���� tial form.

The first is very easy to use intuitively, and I already have. The val-
ues of the function measure some quantity per unit volume, the “density”
of the quantity. The volume element is an infinitesimal amount of volume.
So, multiplying the two together gives an infinitesimal amount of the quan-
tity. Integration just adds them up to get a finite amount. This type of
infinitesimal is what you might call “static”, it is just an amount.F �
����	��
� tial forms, my p-th order infinitesimals, should also represent in-
finitesimal amounts, but they have an aura of direction about them. Consider
one variable calculus. The equation dy = f(x) dx measures the infinitesimal
change in y due to an infinitesimal change in x, and whether f(x) is positive
or negative is significant. If f(x) > 0, then y does the same thing that x
does, that is, increasing x increases y. If f(x) < 0, then x and y move in
opposite directions.

There is a sense of direction for infinitesimals in any Rn. An infinitesimal
change in a variable dw =

�
w�
xi

dxi is easy enough to imagine, but what if
the co �
*+"
�
�
� ts are not partial derivatives? I have been saying all along that
you have an infinitesimal amount of something, but what? It is, in fact, hard
to say. In truth you have something that has a magnitude and a direction
and you want to measure its �
���
"Y# relative to other directions, which you get
by looking at curves. So, you get something concrete by “dividing through
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by dt”. In other words, for ! = wi dxi, the meaningful quantity is

!
dt

= wi

dxi

dt
(5)

the component of the vector w =
�
w1, . . . , wn � in the direction of the tangent

vector to a curve at a point on the curve. So, you could say that a first
order infinitesimal is just another way of writing a vector field. You don’t
take the infinitesimal too seriously until you divide through by dt. Vector
fields are a reasonably natural thing. After all, they represent things with
magnitude and direction in a natural, geometrical way. The velocity field
of a fluid flowing through space, the force due to gravity, an electric field,
friction . . . , all are comfortably described by vector fields. And, vector fields
are real, not some imaginary “infinitesimal.”

You could say a p-th order infinitesimal is some “quantity” with mag-
nitude and a “direction” that you measure the �
���
"Y# of simultaneously in
perhaps several directions, determined by a surface. The real meaning of the
quantity is in the co ��*0"������ ts of the infinitesimal and the form just organizes
the co �
*+"������ ts in a convenient way so that you use them to your advantage.
Well, I am not giving up on the infinitesimal idea yet, but there is definitely
something to this vector field thing, so, let me go on with it for a bit.

The meaningful quantity you get from the infinitesimal is the co ��*0"������ t
you get when you parameterize a surface and substitute

�
xi�
uj

duj for dxi.

In particular, for p-th order infinitesimal ! = wI dxI , and a p-dimensional
surface parameterized by u1, . . . , up, the relevant quantity is

wIJI

where JI is the determinant of the p × p sub-matrix of the Jacobian matrix
J =

�
xi�
uj

whose rows are specified by I. You then integrate the quantity

over the surface to get something wonderful. That is,

D
! =

C
wIJI du1 . . . dup =

C
wI

JI

vol(J)
dV (6)

The infinitesimal amount relative to the surface is wIJI/vol(J) dV .
The second part of the equation is very interesting. To show you why, I

need to call upon the first of a few (obscure) facts from the world of deter-
minants.5 If B and C are n × p matrices with p % n, then

det(CT B) = CIBI

5I am beginning to feel a little guilty about all of these obscure facts about determinants.

Maybe I will put a document on my home page that goes into them. OK, I did it.
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where I is the usual ordered p-tuple of indices and for an n × p matrix A,
AI is the determinant of p × p sub-matrix of A whose rows are given by

I. In particular, vol(J) = J2
I . You could put the co �
*+"
�
�
� ts JI into a

vector
�
. . . , JI, . . . � and vol(J) would be its length. You could put the co-

��*0"������ ts of ! into a vector, then wIJI/vol(J) would be the dot product
of
�
. . . , wI , . . . � with a unit vector

�
. . . , JI, . . . � /vol(J) obtained from tangent

vectors to the surface, the columns of J . Another thing to notice is that if you
change the parameterization, then

�
. . . , JI, . . . � /vol(J), at most only changes

sign, so that it only depends on the orientation of the parameterization, not
the details. Let me spell that out a little more. If (x1, . . . , xn) is drawn by
u1, . . . , up with one parameterization and ū1, . . . , ūp with another parameter-
ization of the surface, then

�
. . . , JI, . . . � /vol(J) = Z � . . . , J̄I , . . . � /vol(J̄) when

evaluated at the point. It would seem prudent, then, to see what this vector�
. . . , JI, . . . � /vol(V ) might have to do with life.

OK, another adventure in determinants is required. If B and C are
n × p matrices and the columns of B are linearly independent, then P =
B(BT B)−1BT C is a matrix whose columns are the projections of the columns
of C onto the plane spanned by the columns of B, a not so obscure fact from
linear algebra. The box built from columns of P would be the projection of
the box built from the columns of C onto the plane built from the columns
of B and its volume is

vol(P ) =
| detCT B|

vol(B)
= CI

BI

vol(B)

This takes a little caculation, but not much. If you put J in for B and throw
away the absolute value, it begins to look like what you are integrating in (6).
What does throwing away the absolute value bars have to do with anything?
It maintains a sense of direction. You are calculating an oriented volume, in
the sense that the directions of the vectors in B and C relative to each other
������"$# the sign of the result.

So, a p-th order infinitesimal is a quantity that has an �
���
"Y# along p-
dimensional surfaces that depends on the orientation of the surface. The
������"$# is realized at a point on the surface by projecting the quantity onto
tangent vectors to the surface at the point, so to speak the tangential com-
ponent of the quantity along the surface.

The infinitesimal can also be represented as a “vector field” defined at
the points in Rn. Why, you ask, do I keep putting “vector field” in quotes?
These guys are not the vector fields we refer to when we use the phrase in
multivariable calculus. For one thing the are (n

p) dimensional objects. Now

17



the rules of exterior arithmetic say that the p-th order infinitesimals are a
vector space over the reals when evaluated at a point and over the variables in
general.6 These “vector fields” technically represent an isomorphism between

the p-th order infinitesimals and the usual vector fields on R(n
p). Of course,

if p = 1, then the dimension of the p-th order infinitesimals is n and we have
been using them to accomplish some of the things the usual vector fields on
Rn are used for, but I want, even in that case, to maintain a distinction. The
reason is the next part of the adventure.

You may have noticed that I also said that you are measuring the �
���
"$#
of the p-th order infinitesimal along the p-dimensional surface. You are
projecting the quantity onto the p-dimensional tangent plane at each point
on the surface. But, the impact of the quantity at a point on a p-dimensional
surface would also be the impact of the quantity in the direction orthogonal
to an (n − p)-dimensional surface orthogonal to the p-dimensional surface
at the point. The impact is along the p-dimensional surface and across the
(n − p)-dimensional surface. However, if you are to use this with an (n − p)-
dimensional surface, you would begin by parameterizing the surface, so that
you have the tangent vectors to the surface. You would like to calculate a
projection on the p-dimensional plane orthogonal to the surface using the
tangent vectors you have. To show you how to do this, I need to take you on
one, final excursion into the world of obscure facts about determinants.

This time we have B is an n × (n − p) matrix with independent columns,
and C is an n × p matrix. Now, for each ordered p-tuple I, there is an
ordered (n − p)-tuple I

�
= (i

�
1, . . . , i

�
n−p) containing the indices not in I.

Let [ I be determined as follows: if i1, . . . , ip, i
�
1, . . . , i

�
n−p can be rearranged

into (1, . . . , n) with an even number of interchanges of adjacent indices, then
[ I = 1, otherwise [ I = −1. For example, if I = (3) and I

�
= (1, 2), then

(3, 1, 2) & (1, 3, 2) & (1, 2, 3), so that [ I = 1, but if I = (2) and I
�
= (1, 3),

then (2, 1, 3) & (1, 2, 3), so that [ I = −1. Now for an obscure fact, let [C B]
be the n × n matrix built from the columns of C and B, then

det[C B] = [ ICIBI \
Actually, this fact is believable enough. What it says is the determinant of
a matrix is the sum of the determinants of pairs of matrices one of which is
obtained from p rows and columns of the matrix and the other from what

6OK, a module over the variables for you purists, but I’m playing this fast and loose.
I am after the ideas and do not want to be confused by stating all of the hypotheses. You

can get them by reading a real book on the subject. In fact, if you read WHYGI you may

recognize that these guys are really tensor fields on Rn.
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you have left by eliminating those rows and columns, together with −1’s
thrown in appropriately. In fact, for p = 1, the calculation is the one used
to define the determinant recursively from the entries in its first column and
the corresponding (n − 1) × (n − 1) minors. Not so bad, but the next one. . .

Build an n × p matrix B ] whose columns linearly independent and or-
thogonal to the columns of B so that det[B ] B] > 0, then

det CT B ]
vol(B ] ) =

det[C B]

vol(B)

the last of the obscure facts. What it says is that [ ICIBI \ is the volume of
the box built from the columns of C projected onto the p-dimensional plane
orthogonal to the plane spanned by the columns of B. Bingo. In fact, there
are no absolute values so it is an oriented volume determined by B. What
does this have to do with infinitesimals?

If the p-th order infinitesimal ! = wI dxI projects the quantity tangen-
tially along p-dimensional surfaces, then the (n − p)-th order infinitesimal

W
! = [ IwI dxI \
projects the quantity orthogonally across (n − p)-dimensional surfaces. For
example, a vector field v =

�
v1, v2, v3 � in R3 is projected tangentially along

curves with ! = v1 dx + v2 dy + v3 dz and orthogonally across 2-dimensional
surfaces by W
! = v3 dx , dy − v2 dx , dz + v1 dy , dz, which is usually written
W
! = v1 dy , dz +v2 dz , dx+v3 dx , dy, so that the co �
*+"
�
�
� ts appear in the
order they appear in the vector field. Going from ! to W
! is called applying
the Hodge * operator7 to ! . If you look at where I used the W notation earlier,
I was sneaking in the Hodge * operator at the time.

So far I have talked about what a p-th order infinitesimal looks like, but
how would you actually come upon them in the real world, the seventeenth
century world to be precise, which is, after all, what I wanted to do all along.
So, try this on for size.

You have a fluid flowing through space.8 The density of the fluid is given
by ^ (x, y, z, t) and the velocity through space is v(x, y, z, t) =

�
v1, v2, v3 � .

7The Hodge * depends on what you mean by orthogonal. I have used the usual euclidean

dot product. If you were in spacetime and used the Minkowski metric the * operator would

look ������������ t.
8I have to thank Merrill Jenkins in Physics for loaning me a book that told me about

fluid flow. Harley Flanders’ book _a` bdc�e ential Forms with Applications to the Physical

Sciences also gave me some ideas.
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Mathematically we are in R4, but physically we are in R3, so visualize what
is happening in the three space dimensions. When I speak of a point it will
be a point in space with coordinates (x, y, z) and a rectangular box whose
sides have infinitesimal lengths dx, dy, and dz.

The volume of the fluid in a point is obtained as follows. Since fluid is
flowing through the point in each of the coordinate directions the net amount
along the x direction would be dx−v1 dt, similarly of the other two directions,
so that the infinitesimal volume of fluid in the point would be

f = (dx − v1 dt) , (dy − v2 dt) , (dz − v3 dt)

= dx , dy , dz − (v1 dy , dz + v2 dz , dx + v3 dx , dy) , dt

= W (dt + v1 dx + v2 dy + v3 dz)

where the first line says that because of the nature of the situation, namely
“flow”, it makes sense to use an oriented volume to incorporate the rela-
tion between the direction the fluid is flowing and the coordinate system
we chose to locate points in space. The other two lines are the result
of exterior arithmetic, including the Hodge * operator, but provide other
ways of interpreting the infinitesimal volume. For example, the infinitesimal
v1 dx + v2 dy + v3 dz is the spacial velocity field of the fluid, and its * is
v1 dy , dz + v2 dz , dx + v3 dx , dy, the flow per unit time of the fluid across
the faces of the point, that is, out of the point. That interpretation is so nice
I will give the infinitesimal a name, g = v1 dy , dz + v2 dz , dx + v3 dx , dy.
So, f = dx , dy , dz − gh, dt.

If you have a region D in R3, then at a fixed point in time you would
have dt = 0, so that D

f = D dx , dy , dz is just the volume of D, hence the
volume of fluid in D at that point in time.9 If you have an interval of time
T , then �

D×T
f = − �

D×T g-, dt is the volume of the fluid that has left the
region across the boundary during the time interval T .

The change in volume is

8 f = −d( gi, dt)

= − 8Ggi, dt

= −div(v) dx , dy , dz , dt

9Actually you would be integrating over a three dimensional surface in R4 where the

parameterization has t constant so that the dt terms really do disappear. In what you
are about to see the dx j dy j dz really goes away because the x, y, and z variables are

dependent so that the part of the Jacobian corresponding to dx j dy j dz vanishes. So, I

am using an abuse of the notation, at least, but the result is correct.

20



where div(v) =
�
v1�
x

+
�
v2�
y

+
�
v3�
z

the usual spacial divergence of a vector field.
The formula 8 f = − 8Gg+, dt suggests that we can define the “rate of change
of volume per unit time” by

8 f
dt

= − 8Gg = −div(v) dx , dy , dz

So, if D is a region in R3

D

8 f
dt

= −
D
8Gg = − �

D
g

which says that the volume of fluid in a region decreases at a rate equal to
the amount crossing the surface of the region per unit time. Sounds good!

The mass of the fluid in the point would be µ = ^ f . The infinitesimal
change in mass would be

dµ = 8:^-, f + ^�8 f

= −

� ^�
t

dx , dy , dz + d(̂�g ) , dt

= −

� ^�
t

+ div(̂Xk ) dx , dy , dz , dt

Now, mass is conserved in nature, so that dµ = 0, which says nothing more
than what is called in fluid dynamics the continuity equation of fluid flow

� ^�
t

+ div(̂Xk ) = 0

We also have that the “rate of change in mass per unit” time is zero, so
that

dµ

dt
= −

� ^�
t
dx , dy , dz + d(̂�g ) = 0

and for a region D in space

D

� ^�
t

dx , dy , dz =
d

dt D
^ dx , dy , dz = − �

D
^�g

which says the mass in D is decreasing at the rate that it is flowing out across
the boundary of

�
D.

All this infinitesimal lm#:n�� leads to sensible facts!
But wait, dµ = 0 means that µ = 89! for some second order infinitesimal

! . You can think about that one.

21



7. Fini

The fluid mechanics example does it. It develops infinitesimals intuitively,
gets more with exterior arithmetic and exterior derivatives and uses the Fun-
damental Theorem of Calculus to understand things. Infinitesimals, I love
’em.
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