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1. Introduction

In the seventeenth century people talked of infinitesimal quantities and in-
stantaneous rates. It was all very intuitive, not at all rigorous, but you got
the right answers, if you followed the rules. In the twenty-first century we
have tensor bundles on smooth manifolds, which are very abstract, but com-
pletely rigorous and practically inscrutable. They describe the same thing,
but how the two are related is not easy to see and no one seems to talk about
it.

If you pick up a mathematics book on
���������	��


tial geometry, you get the
tensor bundles. There may be references to the classical notation, but not the
classical thinking and how it relates to the modern approach. There is one
exception, Michael Spivak’s A Comprehensive Introduction to �������� ential

Geometry, but the forest often gets lost in the trees. You think you could
get there in a physics book where a discussion might begin with “suppose
you have an infinitesimal displacement dx.” But, within half a page you are
looking at contravariant and covariant vectors and equations for how they
transform. You are in the world of tensor bundles and you don’t even know
how you got there.

So, how do you get from seventeenth century calculus to tensor bundles?
I hope to answer that question. I am not going to give a historical chain of
events, but rather a mathematical chain of events. These events may never
have taken place the way I will describe them, but they could have.

2. Infinitesimal quantities and instantaneous rates

So back to the seventeenth century. You would find people having no qualms
at all in talking about an infinitesimal amount, dx, of some quantity repre-
sented by the variable x. They might think of dx as the infinitesimal change
in the variable from x to x + dx. In fact, they might even say dx is the
displacement from the point x to the next point x + dx. I read just this
statement in one of those physics books I mentioned. It was written in the
twentieth century!

The seventeenth century folk were trying to deal with things that changed
all the time, such as the speed of an object as it moves along. If the speed was
constant then all was well. The relation between time, t, distance traveled, s,
and speed, v, was just a linear calculation, s = vt. But, Galileo rolled enough
balls down inclined planes to deduce that the distance the balls traveled was
roughly proportional to the time squared, so how fast were the balls going?
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Leibnitz might have put it like this. If s = t2, to keep it simple, you need to
know how far the ball travels in an instant of time, dt, and that would be an
infinitesimal distance, ds, which you could obtain by

ds = (t + dt)2 − t2

= t2 + 2t dt + (dt)2 − t2

= 2t dt + (dt)2

and then you “throw away the higher order term” (dt)2 to get the result

ds = 2t dt (1)

Throw away higher order terms! Why? Well, because it works! You can
get the speed, v, by dividing ds by dt. For one thing, the relation between
infinitesimal distance, instants of time and speed is linear. More to the point,
at, say, t = 3, you have gone s = 9, and at that instant your speed is v = 6.
Just draw a graph of s = t2 and measure the slope of the graph at the point
(3, 9). In other words, infinitesimal calculus was not rigorous. There were
rules that one followed because they gave the right answers, and if they did
not, they were changed. People were a bit distressed by this lack of a firm
foundation. (By the middle of the eighteenth century people had begun to
formulate the idea of a limit, which allowed you to watch the higher order
terms disappear gracefully, rather than be arbitrarily discarded.) Calculus
was an experimental science. Nevertheless, it did work.

The result (1) is called a ��������� ential equation relating the ��������� ential of
s, ds, to the

���������	��

tial of t, dt. The equation describes the

���������
of an

infinitesimal change in time to produce an infinitesimal change in location.
In general, f(x)dx is an infinitesimal amount of something produced by an
infinitesimal amount of x.

In one variable calculus, any infinitesimal quantity f(x)dx is the
�����������

ential of some variable.1 That is, f(x)dx = dy for some variable y, namely,
y = f(x)dx. The Fundamental Theorem of Calculus says that these two
equations are equivalent. When there is more than one independent variable
an infinitesimal quantity may not be somebody’s

���������	��

tial. If you had a

force in plane with components y, −x in the x and y directions, respectively,
then y dx−x dy would be the (infinitesimal) amount of work needed to move
from (x, y) to (x + dx, y + dy). If you wanted to calculate the total work to

1Assuming f is � �"!$#�%�&�' tly nice, say continuous. I will always assume that functions

are �(�)!*#	%+&	' tly nice for what I say to be true. So, send me email only if what I say is never

true.
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move along a path you would just add up the work to move through each
point, namely y dx − x dy. The integral symbol is, after all, an elongated
“s” for “sum.” However, y dx − x dy is not an infinitesimal change, that is,
the

���������	��

tial of some variable. If y dx − x dy = dz for a variable z, then

y = , z , x and −x = , z -., y, so that , 2z -., y , x = 1 and , 2z -.,./0, y = −1
and that cannot happen since the two second order derivatives should be the
same. We tend to think of calculus as the mathematics of change, but there
is more to it than that.

So, what do you do with infinitesimal quantities? Well, if you divide one
by the other you get an instantaneous rate, the amount of one quantity per
unit of the other at a single point. Since these are infinitesimal quantities
the rate can change from point to point. Continuing the work example, if dt
is an instant of time then dividing by it you get

y
dx

dt
− x

dy

dt
(2)

the amount of work done per unit time by the particle as it moves along from
(x, y) to (x + dx, y + dy), that is, the power required at that instant to move
from that point to the next. It is an instantaneous rate in that the power at
the next point will be

���������	��

t.

Great. Calculus is just arithmetic of infinitesimals. But wait! How big
is dx, what is the length of a point, isn’t it 0? You’ve just divided by zero!
People wrote papers and articles back and forth, one side saying “this in-
finitesimal business was nonsense” and the other saying, “but it works.” One
of the former was Bishop Berkeley and one of the latter was Isaac Newton.
Which name do you recognize? I rest my case.

Consider, if you will, the following two innocent looking formulas. The
seventeenth century folk would say that if you have variables x and y, then
you have

dy =
dy

dx
dx and

1

dy
=

dx

dy

1

dx
(3)

the formula on the left relates infinitesimals in terms of y to infinitesimals
in terms of x, and the formula on the right relates rates with respect to y to
rates with respect to x. Note that dividing through by an infinitesimal has
become multiplying by its reciprocal. These formulas look like you are just
doing arithmetic and to the seventeenth century people you were. There is a
subtlety that should occur to us, but not necessarily the seventeenth century
folk, namely that dx and dy are infinitesimals that have a heuristic existence
and dy/dx and dx/dy are really derivatives that are real functions. The

3



formulas don’t look like much, but they are an important step toward the
modern approach. For the sophisticated reader, the one on the left has to do
with the cotangent bundle and the one on the right with the tangent bundle,
but I get ahead of myself. For the rest of us, just let me say that in going
from x to y the

���������	��

tial is covariant and the rate is contravariant, which

you can say refers to which variable is on top and which is on the bottom of
the derivative in the formula. Covariant means that you are going the same
way, that is, going to the new y from the old x you need the derivative of
the new with respect to the old. Contravariant is the other way around.

To keep going we need to look at a multivariable setting where you have
more than one independent variable. We might as well go for broke and say
we have variables x1, x2, . . . , xn. Infinitesimal quantities become2

1 = 1
1 dx1 + . . . + 1

n dxn = 1
i dxi

where 1 is the total infinitesimal amount of a quantity and the term 1
i dxi

is the contribution to the total from the amount dxi. Rates become

V = vi 1

dxi

where vi 1/dxi is the amount per unit xi contributed to the rate per unit V .
Finally, the analog of dividing one infinitesimal quantity by another is to

multiply 1 and V together to get the instantaneous amount of 1 per unit V ,

1 · V = 1
iv

j dxi

dxj

= 1
iv

i (4)

where we have used the seventeenth-century-like rule

dxi

dxj

= 2 i
j =

1 if i = j
0 if i 3= j

which simply says that one unit of xi produces one unit of xi, that’s deep, and
and one unit of xj does not produce any of xi because they are independent
of each other.

2I am not going to put indices on summation symbols. Just assume that any index

inside the sum that does not appear outside the sum is summed over. For that matter, I

am not going to put punctuation at the end of displayed formulas, so sue me.
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A most important example may help pull things together. Suppose 1 =
dy an infinitesimal change in the variable y, then

1 = dy =
, y

, xi

dxi

so that 1 · V =
, y

, xi

vi (5)

is just the directional derivative of y in the direction of the vector v =4
v1, . . . , vn 5 , the instantaneous rate of change of y along the direction of

the vector v. I have momentarily lapsed into modern jargon by using the
term vector, but I could not help myself.

It is fairly easy to imagine an infinitesimal quantity 1 , but where does
a rate operator V come from? Let me present an intuitively appealing
example. Suppose you have a curve parameterized by a function c(t) =
(x1(t), . . . , xn(t)). The derivative of c, is

c6 (t) =
dx1

dt
, . . . ,

dxn

dt

and c6 (t) is the tangent vector to the curve at the point c(t) on the curve. To
make the example more concrete you can think of c(t) as the path of a particle
moving through space, then c6 (t) is its velocity. If you have some quantity y
you measure as you move along the curve, you have the instantaneous rate
of change of the quantity with respect to t given by

dy

dt
=

, y

, xi

dxi

dt
(6)

so that the rates with respect to t are just

1

dt
=

dxi

dt

1

dxi

or 1/dt = V , where vi = dxi/dt. Therefore, “per unit V ” is per unit t along
the curve and the vector v mentioned in the previous paragraph is the tangent
vector to the curve. This example is more than appealing. Any V can be
obtained this way. Suppose you have a V , pick a point x0 = (x01, . . . , x0n),
then on an interval about t = 0, solve the initial value problem

c6 (t) =
4
v1(c(t)), . . . , vn(c(t)) 5

c(0) = x0

to get a curve whose tangent vectors are given by V .
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3. The modern approach

I think we are ready to see what became of infinitesimals. We all know that
ratios of infinitesimals became derivatives, but that only gets you through
Calculus I. A warning: we are going to take a big leap, but hang on, we will
come down softly. Just remember the Mathematic Oath: Pick a result and
find a starting point from which you can rigorously arrive at the result, even
if the starting point is out in left field.

Before we get to the fate of infinitesimals, we need to look at variables.
Essentially everything I have said so far has been about variables, indepen-
dent variables and dependent variables. So the first step toward modern is
to replace dependent variables with functions, f : Rn 7 R. That was easy
enough. But, wait we need to stick to nice functions, I will call them smooth,
but I am not going to tell you what they are yet, even though it violates the
Mathematic Oath. If you have heard the word smooth in this context, then
go with what you have heard, but I may have a surprise for you later.

Next comes (or goes depending on your attitude) the rate V . At a point
p in Rn, let Fp be the set of smooth functions defined on a neighborhood of
p. A derivation at p is a function Vp : Fp

7 R satisfying the following for f
and g in Fp and a and b in R.

1. If f = g on an open set containing p, then Vp(f) = Vp(g).

2. Vp(af + bg) = aVp(f) + bVp(g)

3. Vp(fg) = g(p)Vp(f) + f(p)Vp(g)

The first condition just say a derivation acts locally on functions. The other
two say that if it acts like a derivative, then it is a derivative. So, this
approach to rates is not too bad, the rate operation is just an operator on
functions, which is as it should be. The set of all derivations at p, for which
I will write Tp, can be made into a real vector space in the usual way for sets
of real valued functions. This is a pretty abstract approach to something
that started out as dividing by an infinitesimal, but having been born in
the twentieth century I could see the rationale behind it, particularly when
I found out what comes next.

If c : R 7 Rn is a curve in Rn going through p with c(0) = p, then the
function Vp : Fp

7 R defined by

Vp(f) =
df 8 c

dt
(0) (7)
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is a derivation at p. When you compare this to (6) and the discussion around
it, it comes as no surprise that a derivation is also called a tangent vector

at p and Tp is called the tangent space at p. I feel better now. A vector

field is just a bunch of tangent vectors glued together smoothly, that is, a
vector field V is a function that assigns to each point p in an open set of Rn

a tangent vector Vp in Tp so that for each smooth function f on the open set,
the function V (f) defined by V (f)(p) = Vp(f) is also smooth.

In fact, to get the tangent bundle all you do is glue all the tangent spaces
together, in a “smooth” way, but I think that is as close as I will get to
bundles. You can chase them from here yourself.

Now at last we come to the demise of the infinitesimal. The infinitesimal
quantity 1 is replaced at a point p in Rn by a linear function 1

p : Tp
7 R.

Now, that is definitely out in left field. This definition is determined not
by what an infinitesimal quantity might mean to you, but is determined
entirely by how it is used. How it is used is summarized completely by (4).
In the work example, I said that to obtain the amount of work in going from
one point to another you add up the infinitesimal amounts along the way by
integrating. But, what you really integrate is the function in (2) along a path
between to two points. The vector

4
dx/dt, dy/dt 5 is the tangent vector to the

path along the way. You are using the linear relationship in (4) between the
infinitesimal amount of work along the curve and the tangent vector to the
curve to get the thing you really need to integrate. The directional derivative
computed in (5) is another example. That result can be achieved by defining
for a function f in Fp a linear function dfp : Tp

7 R by

dfp(Vp) = Vp(f) (8)

Well, there you have it. Our warm, fuzzy little infinitesimal amount of some-
thing is replaced by a linear function. Why? I guess you could say because
it works.

We might as well keep going. The set of all real-valued linear functions
defined on Tp is denoted T 9p and is called the cotangent space at p, the linear
functions are called cotangent vectors. The cotangent space is also a real
vector space in the obvious way and is well known in linear algebra as the
dual space of Tp. When you build cotangent fields in a way analogous to the
way you build vector fields (I leave the details as an exercise), you do not
call them cotangent fields, you call them ��������� ential forms in deference to
their now long lost ancestor, the infinitesimal

���������	��

tial. Glue the cotangent

spaces together smoothly and you get the cotangent bundle.
What now, the linear functions on the cotangent space? We already have

them, they are the tangent vectors, just define for each tangent vector Vp,
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the function Vp : T 9p 7 R by

Vp(
1

p) = 1
p(Vp) (9)

So, what does “smooth” really mean? Before I tell you I would like you
to observe that in this modern approach not only did I do away with the
dependent variables, I have never used any independent variables! In other
words I have never referred to a coordinate system in Rn. You are supposed
to be impressed, I have created multivariable calculus without any variables.
If you liked what I have done so far, you will love how I am about to define
“smooth functions.” In fact, I will let you participate. You get to choose the
starting point. Pick from one of the following and do it.

1. Choose a family of real-valued functions defined on open sets in Rn

2. Choose a family of curves from R to Rn

If you do number 1, then we will call your family the smooth functions and
any curve c for which f 8 c : R 7 R is infinitely

������������

tiable for any f among

your smooth functions we will call a smooth curve. If you do number 2, we
will call your curves smooth and the smooth functions will be the f ’s that
satisfy f 8 c is infinitely

������������

tiable for any c among your smooth curves.

I only hope that you choose enough, but not too many, smooth things in
your family so that both families are useful or at least interesting. When you
think about, all we really need are curves and functions, then (7) gives you
tangent vectors and tangent vectors give you cotangent vectors. In fact, you
might even be able to show that any derivation can be obtained from (7).

The problem with using a coordinate system is that there are so many of
them. What this approach to the modern calculus shows is that the entities
that constitute calculus do not depend on a coordinate system. If you do
pick one, calculus is already there waiting for you. You might say that the
symbol Rn itself implies that there already is a coordinate system, but not
really. I could say that R3 is euclidean space, or R4 is spacetime. Well, OK,
what would R5 be, you say?

So, what is a coordinate system? It is just an assignment to each point
p in Rn, a unique n-tuple of real numbers (x1, . . . , xn), so that every point
is assigned to some n-tuple. You have, then, n functions, xi : Rn 7 R, call
them the coordinate functions. If you want to have any fun, they should be
among your smooth functions. What then, if you don’t need a coordinate
system, why have it? Without a coordinate system calculus is probably too
abstract. You would be hard pressed to use it to pay the bills without the
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variables that we use to link the calculus to the real world. So, let’s have
one.

The coordinate function xi gives us a
���������	��


tial form dxi using (8) and
then a vector field , xi using (9). These guys are wonderful because their
values at each point are bases for the cotangent and tangent spaces at the
point. To prove this is messy, so I won’t. In fact, they are what are called
dual bases, which means dxi( , xj) = , xj(dxi) = 2 i

j. So, we have that any
vector field and

���������	��

tial form can be written

V = vi , xi

and 1 = 1
idxi

and 1 (V ) = V (1 ) = 1
iv

i

where 1
i and vi are smooth functions. Home again. In fact, to really make

you feel at home, it is common practice to write

, xj

, xi

for , xi(xj)

and , f

, xi

for , xi(f)

and even ,
, xi

for , xi

Perhaps you have noticed that I have used superscripts for the co
��:;������


ts
of tangent vectors and subscripts for the co

��:<������

ts of cotangent vectors.

There is a reason. It helps you remember how the basis vectors and co
��:�

cients in one system are related those in another. In particular, it happens
that, for two coordinate systems (x1, . . . , xn) and (x̄1, . . . , x̄n)

dx̄= =
, x̄=
, xi

dxi so that ¯1 = =
, xi

, x̄=
1

i

and ,
, x̄= =

, xi

, x̄=
,
, xi

so that v̄
=

=
, x̄=
, xi

vi

So, for a co
��:;������


t with a superscript inside a sum the corresponding variable
is on the bottom of the partial derivative and for those with a subscript the
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corresponding variable is on the top. I could have even made that happen
in the formulas for the

������������

tial forms by writing the coordinate functions

xi, but then I would have to declare that, since the superscript in >> xi is in
the bottom of the “fraction” consider it to be a subscript. Besides, I can live
with v2, but x2 has been x squared too long for me. If an index inside a sum
appears on the top and on the bottom, it is summed over. This cute fact is
the basis for the infamous Einstein summation convention where you leave ? �
the summation symbols entirely. In any case, note that the change of basis
for cotangent spaces is covariant and the change of basis for the tangent space
is contravariant (compare to (3)). Unfortunately the co

��:;������

ts change the

opposite way, so that the terminolgy can be confusing.
That’s about it. You can take the rest of the trip yourself, but let me

fulfill the promise I made in the beginning and get you started, although I
will be fast and loose - so what else is new.

4. Manifolds and tensor bundles

A n-dimensional manifold M is a topological space together with homeo-
morphisms from open subsets of M to Rn, so that each point of M is in the
domain of at least one of these homeomorphisms. What did he say?! All I
said was you have a space with coordinate systems(s) drawn on it, at least
locally. Take a sphere and draw lines of latitude and longitude on it and you
are there. The manifold is smooth or ��������� entiable, means that whenever two
coordinate systems overlap, the function that takes one set of coordinates to
the other is infinitely

������������

tiable.

A tensor @ p of type (N, M) at a point p in the manifold is just a function

@ p = T 9p × . . . × T 9p
N copies

× Tp × . . . × Tp

M copies

7 R

that is linear in each of its variables. So, cotangent vectors are tensors of
type (0, 1) and tangent vectors of type (1, 0). In fact, you can call the real
numbers themselves tensors of type (0, 0).

The tensors of type (N, M) are a real vector space in the usual way.
You can even define a multiplication of tensors where the tensor product
of @ p of type (N, M) and A p of type (L, K) gives a tensor of type (N +
L, M + K) denoted @ p B A p, but this is another story. Glue tensors of the
same type at each point together smoothly and you have a tensor field. So,
what are they good for? Well, if nothing else, they generalize and unify real
valued functions (which are now tensor fields of type (0, 0)), vector fields
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and
���������	��


tial forms to an incredible, but esthetically pleasing level. If
that were all, well . . . Let me just say that they provide what you need
to do

������������

tial geometry and talk about things like curvature. They are

wonderful for physicists for describing physical laws. In fact, the most famous
equation of all, the Einstein gravitational field equation an equality between
two type (0, 2) tensor fields, one describing the geometry of spacetime and
the other describing the distribution of mass in it. Maxwell’s equations for
electromagnetism are tensor equations.

In a coordinate system you can build a basis for type (N, M) tensors at
a point using the dxi’s and , xj ’s. The co

��:;������

ts are grotesque

@ j1...jN

i1...iM
(10)

and the relation between co
��:;������


ts in
���������	��


t coordinate systems is even
worse

¯@DC 1...C N=
1...= M

=
, xi1

, x̄=
1

. . .
, xiM, x̄=

M

, x̄C 1

, xj1

. . .
, x̄C N, xjN

@ j1...jN

i1...iM
(11)

The only reason I mention this is that people will define tensors using these
formulas, that is, a tensor field is a bunch of real valued functions (10) related
by (11) in

������������

t coordinate systems. Physicists are the worst for doing

this, but I have done it myself.

5. Fini

Enough already. You take it from here - really. I am tired of trying to type
infinitesimal. I will say that I miss infinitesimals. They are so intuitively
appealing. Actually, I lied, I don’t miss infinitesimals at all. I use them all
the time, I teach my students to use them. You can get the right answers, if
you do. Even better, you can formulate the right questions about the world
and that is the best of all.
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