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Abstract

A robust method for fitting a model from a parametric family is fundamental
to effective statistical analysis. A procedure is given for robustizing any
model fitting process using weights from the family from which the model
is to be chosen. The weighting reduces the influence of information not
compatible with the model family, while maintaining the basic structure of a
familiar model fitting process. The procedure produces a parametric family
of model fitting functions. The value of the parameter determines the degree
to which the weighting influences the robustized model fit. A mechanism for
determining an appropriate value for the parameter is described.

Keywords: ROBUST PARAMETER ESTIMATION; M-ESTIMATION; ITERA-
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1. INTRODUCTION

Model fitting is one of the basic activities in statistical analysis. Param-
eter estimation fits a model from a parametric family, but the most common
parameter estimation procedures, such as maximum likelihood or method of
moments, are not robust. They are sensitive to outliers or other contam-
ination in data, or perhaps to incorrect assumptions about an appropriate
population model.

Since robustness requires accommodating deviations from a model, it
would seem reasonable that the structure of the model family play a direct
role in obtaining the fit. In particular, for a given model, suppose one could
weight data so that data likely to occur under that model had relatively
large weights and data not likely to occur had relatively small weights. One
could then apply a parameter estimation method to obtain estimates for
meaningful quantities, such as moments, or maximum likelihood estimates
for the weighted data. The analogous quantities could be calculated for the
model itself, that is for the distribution obtained by using the model to
weight utself. If the estimate for the weighted data is close to its theoretical
counterpart for the model , then one might believe that much of the data are
likely to occur in a sample from the model. Therefore, the most reasonable
fit of this kind would be the model for which the weighted data estimates
and the theoretical values are the same. The method presented here finds
this model.

The weights in the procedure I am proposing are proportional to a power
of the density. Suppose, for example, that one wants to fit a normal with
mean zero to data {1, ..., 2, }. The densities in the appropriate normal family
are ¢(z;0) where 6 is the unknown variance. For a particular 6, we weight
the j-th data point with w; = K¢°(x;; 0), where ¢ is a fixed positive exponent
and K is chosen so that the the weights sum to one. The exponent can be
used to control the influence the model has on the weights. The larger the
exponent the more data compatible with the model are weighted relative to
those data not compatible. The variance of the weighted data would then
be v = 3 ; w;z}. This value would be compared to 7 = [ z*w(z)d(z;0) dz,
where w(z) = K*¢°(x; ). The constant K* is chosen so that [ w(z)¢(z;6) dx
is one, that is, so that w¢ = K*¢°t! is a density. This density is, in fact,
normal with mean zero and variance 7 = 6/(c+ 1). If the normal model is a
good fit to the bulk of the data, then 7 and v should be close to each other.
The method I will describe is an iterative procedure to determine the model
that makes them equal.

The exponent ¢ can be used as a tuning constant. The greater the ex-



ponent, the more the structure of the model family influences the fit. T will
show in Section 4, that there is an analytical basis for choosing the exponent
automatically. In particular, I will define a criterion p(c) that measures the
efficiency in using a particular member of the model family to describe a
sample using weighting. The maximum of p occurs for an “optimal” choice
of ¢. Most, if not all, robust parameter estimation methods have tuning con-
stants, but they are either chosen by the user or given default values suitable
for specific situations which may or may not be applicable. The method
introduced here has the advantage that no such user choices are required.
I will refer to the method as robust model fitting.

2. EXAMPLES

Robust model fitting can be implemented in a variety of situations. As
an illustration I will describe how it is applied to the most familiar, maxi-
mum likelihood estimation for normal models. Figure 1.a shows a histogram
of a sample of size 200 from a standard univariate normal (1 = 0,02 = 1)
to which 30 data values near -7.0 have been added. The usual maximum
likelihood estimates for the parameters are the sample mean, i = —.98, and
sample variance, 62 = 7.35. The normal density with these parameters is also
plotted with the histogram and is an understandably poor fit. Robustizing is
accomplished by an iterative procedure that successively recomputes param-
eter estimates in two steps. The starting values are the maximum likelihood
estimates for the unweighted data.

The first step in an iteration is to weight data with a power of the model
density using the current parameter estimates, i and 2. In this example,
the weight for a data point z is proportional to ¢°(z; i, 5%), where for the
purposes of illustration, the exponent ¢ was chosen to be .5. A histogram
of the weighted data in the first iteration is shown in Figure 1.b. The effect
of the weighting is emphasized by the horizontal lines in Figures 1.a and b.
Data compatible with the model are given increased weight, while data not
compatible are down weighted. The maximum likelihood estimates for the
weighted data, call them 7 and §2, are then computed to be -.33 and 2.57,
respectively. The corresponding normal density is also shown in Figure 1.b.

The second step in an iteration is to obtain the parameters for the model
that would produce 7 and 82, if maximum likelihood estimation were applied
to the model weighted by itself. A normal distribution with parameters p
and o2 weighted by the c-th power of itself is also a normal distribution, that
is, ¢°(z; p, 0%)¢(x; 1, o) is proportional to @(z;u,0?/(c + 1)). For ¢ = .5,
the model with parameters fi; = 7 = —.33 and 6% = 1.55* = 3.85 when



weighted by itself is a normal with parameters 7 and §2. The normal density
with these parameters is shown in Figure 1.c, (solid line) super imposed on
the histogram of the unweighted data. The original density is also plotted in
the figure (dashed line) to show the improvement in fit from one iteration.

The iterations are continued, replacing 2 and 6% with fiy and 6%, until
convergence, that is, until the change in the parameters from one iteration to
the next is sufficiently small. The table in Figure 1 shows the estimates for
succeeding iterations. Figure 1.d shows the model obtained at convergence,
which has parameters, i = —.04 and 62 = 1.01. It is this model that produces
the same result when used to weight the data and when used to weight itself.

The optimal exponent based on the criterion p (Section 4) is ¢ = .492
and the corresponding parameter estimates are it = —.04 and 62 = 1.01 or
o = 1.00.

Since the parameters in this example are location and scale parameters,
the estimates can be compared to other standard robust location and scale
estimators. Location was estimated by the median and M-estimation using
the Huber and bisquare v functions. Scale was estimated using the median
absolute deviation (MAD), a 7-estimator using the Huber ¢ function, and
an A-estimator using the bisquare 1 function. The estimates were obtained
in S* using defaults for all user choices. The defaults are chosen so that
the estimators are consistent for estimation from standard univariate normal
samples, and so, are appropriate for this example. The reader is referred to
the documentation and program listings in ST for details. For location, the
median is —.26, the Huber estimate is —.29, and the bisquare is —.04. For
scale, the median absolute deviation (MAD) is 1.19, the Huber-7 is 1.30, and
an A-estimate is 1.08. For this example, the robustized model fit is at least
as good as these other robust estimators.

There are many robust estimators for the normal family. In a sense, most
robust estimators are built with the normal family in mind, that is, they
are most effective when uncontaminated data are expected to be symmetri-
cally distributed about a central location. Dealing with asymmetric data is
more difficult. Robust model fitting requires only a reasonable model for the
asymmetry. For example, Figure 2 shows the histogram for a sample of size
400 from a gamma distribution with shape parameter « = 5 and scale 8 = 2,
to which 20 points near 35 have been added. The usual method of moments
estimators for the parameters are @ = 2.8 and § = 4.1. The dashed line
in Figure 2 shows the density with these parameters. The solid line is the
robust model, with parameters 5.5 and 1.9, obtained with exponent ¢ = 1.
This model was was obtained by finding parameter estimates and values of



the criterion p for exponents ¢ determined by the golden section numerical
optimization routine. This routine systematically searches for a maximum
of p (Press et al, 1990, p. 293).

For a fixed value of ¢, parameter estimates were found by iterating the
two step process as follows. The function g(z; «, ) is a gamma density. For
current values & and B,

1. obtain weighted moments
m = ijibj
J

v o= ij(:vj —m)?

where w; is proportional to g(z;; &, B).
2. New estimates are

ap = (c+1)- (1)

b= (") ser) @)

The new estimates are the parameters of a gamma distribution which
when weighted by itself is a distribution with mean m and variance v. In
fact, a gamma with parameters o and [, weighted by itself is a gamma with
parameters c¢(a— 1)+« and §/(c+1), so, (1) and (2) are just the method of
moments calculations for the weighted gamma. The table in Figure 2 gives
the parameter estimates and criterion value for a range of values of c.

3. GENERAL DESCRIPTION

I will adopt the notation commonly used in robust statistics to give a
general description of the robustizing process. Assume a parametric family
of densities {g(z;0)} with @ in a subset © of RF. A parameter estimator
is a functional 7' : F — O, where F is a general family of probability
distributions. A data set is represented by its empirical distribution, that is
the parameter estimate for a data set would be denoted T'(F'), where F' is
the empirical distribution of the data.

For a given ¢ > 0 and ¢ in O, the weighting process can be formulated in
terms of a weighted distribution. Namely, for F' in F, let F,; be defined by
dF.1(z) = w(z; t)dF (z) with w(z; t) = ¢°(z;t)/Er[g°(X;1t)]. A robustization
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TABLE 1: The function 7, for parameter estimation using method of moments.

Ga 0 (Ga)c,g Tc(e)

Normal Wy X Normal p, /(c+1)

Exponential A Exponential M(c+1)
Gamma «, Gamma (c+Da—c, 8/(c+1)
Beta, @, Beta, (c+Da—c (c+1)F—c¢
x> v Gamma v—2c/(c+1)
T v e 2w/(2—c(v+1))
N=(c+1)v+c
Double exponential | u, o | Double exponential K, of(c+1)

for a given estimation functional 7' and a fixed ¢, denoted T, is obtained as
follows.

In theory, at least, we can define a function 7. : © — © by 7.(0) =
T((Gp)c,0), where Gy is the distribution of the model with parameter 6. This
function describes the result of applying the estimator to a model weighted
by itself. In many cases, the function 7, is quite easy to obtain. Often, 7.(6)
is just the parameter of the density proportional to g¢*1(z;#). Table 1 gives
the function 7, for several common families, where estimation is method of
moments.

The robustized estimator T, is then defined by T,(F) = § where

7e(0) = T(Fp)- (3)

The 6 that satisfies (3), is obtained by an iterative procedure on the param-
eters. Namely, let t* = T'(F) and for N > 0,

tN+1 = Tc_l(T(Fc,tN))7 (4)

then T,(F) is a fixed point.

The convergence properties of this procedure are quite reasonable for
many useful model families and estimation procedures. In particular, for M-
estimators, a value for the asymptotic convergence rate of the iterative pro-
cedure can be obtained. For the purposes of this discussion an M-estimator
will be defined to be a parameter estimator T', where T'(F') is found by solving

Er[¢(X,T(F))] =0, for a function % : R x RF — RF.



It follows from (3) that 7, is also an M-estimator obtained by solving for

f in
Erlw(X;0)y(X,1.(0))] = 0. (5)
that is, the function for T, is v.(z,t) = w(z; )Y (z, 7c(t)).

The iterative procedure in (4) finds a fixed point, that is, a solution to
h(t) = t for h(t) = 7, (T(F.s)). The local convergence behavior is char-
acterized by the largest eigenvalue of h/(t) at the solution (Johnson and
Riess, 1982, p. 197). If this eigenvalue is less than one, the procedure con-
verges linearly near the fixed point. The smaller the eigenvalue is, the faster
the process converges. For M-estimators, the iterating function satisfies
Ef, (X, 7(h(t)))] = 0. Differentiating with respect to ¢ leads to

W(t) = —c{Er, [ ()} Er, [5 logg] (6)
= ¢B(t){I+cB@®)}™ (7)

at a fixed point, where
B(t) = —Er[¢] " Erl¢e g log g]- (8)

Within the model family, i.e. F' = Gy, Eg,[¥.(X,0)] =0, for all §. Dif-
ferentiating this equation with respect to 6, leads to B(#) = I, so that, for
F “near” a model, local convergence at a rate of about r = ¢/(c+ 1) should
be expected.

4. EXPONENT SELECTION

The criterion p for making the “best” choice for the exponent ¢ measures
the retention of efficiency in using a model GG to describe a sample from a
distribution F'. The purpose of this section is to define p and to justify this
interpretation.

The matrix B in (8) is related to the influence function. In fact, we have
B(T,(F)) = Ep[IF(X;T,, F)s" (X; T,(F))], where s(z;t) = 2 logg(z;1), the
maximum likelihood scores function for the model G;. If F' = Gy, then B is
the identity. It is reasonable to suppose that the further this matrix is from
the identity, then the less alike the two distributions are. This interpretation
is even more reasonable because the matrix is related to asymptotic efficiency.
The relationship is easier to see if the parameter is one-dimensional.

The asymptotic efficiency of an M-estimator for using a model G to de-
scribe a sample from a distribution F' is given by {Er(s®)Er(IF?)}~!, the
reciprocal of the Fisher information times the asymptotic variance. It follows



from the Cauchy-Schwartz inequality that B=2 is an upper bound for the ef-
ficiency. Of course, if F' and G are the same, then B2 is one. On the other
hand, if B~? were much less than one, then one could say that using G to
describe a sample from F' is not very efficient. In other words, B~2 measures
efficiency retention when using G to model F'. If the retention is low, then
G is not a good model for F. This rationale is the basis for the exponent
selection criterion p, which is defined to be

p(c) = BT (T.(F)),

or its smallest eigenvalue in the multiparameter case. The value of ¢ that
maximizes p corresponds to the model for which the efficiency retention is
the greatest, and that is the model chosen.

It follows readily from (7) that p(c) = (c/r — c)?, where r is the largest
eigenvalue of 1/, that is, the convergence rate of the iterative procedure. The
convergence rate for a fixed point iteration can be estimated from successive
parameter estimates. In particular, if §V is the parameter estimate at the
N-th and last iteration, the convergence rate can be estimated by,

A | 9N _ 0N—1|
"= m
In practice, p(c) is computed by p(c) = (¢/7 — ¢)2.

It may be somewhat surprising that the convergence rate of a parameter
estimation algorithm has a statistical interpretation. A similar circumstance
occurs in fitting mixture models, when the EM algorithm is used. The con-
vergence rate of the EM can be interpreted in terms of Fisher information

and has been used with some success in assessing the quality of a mixture
model fit (Windham and Cutler, 1992).

5. ROBUSTNESS

A quantitative discussion of the robustness of a robustized model fitting
procedure is complicated by the fact that the estimate depends on ¢, the
exponent. For example, if the original estimator 7' is an M-estimator, then
for a particular exponent ¢, T, is also an M-estimator, and a great deal of
mathematical machinery can be used to study robustness. By choosing the
estimate that maximizes the criterion p, the entire process is no longer an M
estimator. At this point the best I am able to do is discuss the robustness of
T, for a fixed ¢, and, in fact, most of the results apply to M-estimators. The
restriction to M-estimators is not that serious, in that the goal is to improve
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the properties of simple estimators, such as maximum likelihood or method
of moments, both of which are M-estimators.

Some characteristics of robustness for a parameter estimator can be in-
vestigated with the influence function IF( - ;T, F) (Hampel et al., 1986).
The value IF(z; T, F') measures the effect on T'(F') of adding an observation
at . The supremum in z of the magnitude of the influence function, the
gross error sensitivity v*(7, F'), is a measure of the stability of 7" under small
changes in F', hence measures local robustness. Another important measure
of robustness is the breakdown point £*(7, F'), which describes at what dis-
tance from the distribution the estimator no longer gives reliable information.
The hope is that an estimator will have a low gross error sensitivity and a
high breakdown point. Unfortunately, such basic estimators as maximum
likelihood and method of moments often have infinite gross error sensitivity
and zero breakdown point, the worst cases.

For an M-estimator T" and a fixed ¢, the influence function for 7 is given
by

IF (23 T3, F) = w(a; 0){r1(6) (I — }(6))} 'IF (33 T, Fl),

where § = T.(F) and A’ is given in (6). The presence of the weight function
w makes the gross error sensitivity of 7, is finite for many model families,
even when it is not for 7T itself.

The breakdown point is a global measure of robustness and is perhaps
the more important of the two. I have no general results, but the following
relation has been useful in specific cases. For a fixed distribution G, if there
are constants k£ and m so that for any distribution F' for which

\EG[IF (2;T, F))|/v*(T, F) < k, it follows that [T(F) — T(G)| < m, (9)

then ¢*(T,G) > k/(1 + k). This fact is particularly useful for situations
involving scale parameters. For example, it follows readily that for esti-
mating the variance by fitting a univariate normal with known mean using
robustized maximum likelihood, the breakdown point satisfies e* > 1/(1 +
max(1, 2(C—;H)e_2<cc—+1>_1)). In particular, for large enough ¢ the breakdown
point is at least one half, but approaches zero as ¢ approaches zero.
Unfortunately, (9) is not always useful, even in some simple cases. For
example, for estimating the mean by fitting a univariate normal with known
variance using robustized maximum likelihood, (9) does not hold. In fact, the
breakdown point may well be zero for this example. For F' = (1 —¢)G +¢H,
with G a standard normal, the iterative procedure for the mean has, in

general, two fixed points, one near the mean of G and the other near the



mean of H. Which of the two is obtained depends in part on where the
iterations are started. Starting with the mean of F' would be expected to
produce the desired result for ¢ sufficiently small. Using a high breakdown
starting point would provide greater assurance, but simulations presented in
Section 6 ignore this possibility and the results are still quite good.

6. SIMULATIONS

A feel for the effectiveness of the robustizing procedure can be obtained
from simulations. Simulations are particularly important since analytic mea-
sures of robustness for the complete robustizing process, including automat-
ically choosing ¢, are not available.

The simulations fitted a univariate normal to data, where the parameters
were the location and scale. These parameters were estimated using us-
ing both maximum (MLE) and robustized maximum likelihood (RMF). The
maximum likelihood estimates are the sample mean and standard deviation.

The robust estimators mentioned in Section 2 were computed as well.

Two sets of experiments were performed. The first consisted of 500 repli-
cations of estimation for a sample of size 100 from a standard univariate
normal. The second consisted of 500 replications of estimation for a sample
of size 100 from a mixture of two normals, .95¢(z;0,1) 4+ .05¢(z;4,1). The
latter data sets contained about five percent contamination, concentrated to
the right of the bulk of the data, but not so far to the right that all outliers
are obvious. Table 2 shows the mean square errors, standard deviations, and
biases for the location and scale, respectively.

These tables suggest that the RMF estimates performed well whether
or not contamination was present. When contamination was present, the
robustized estimates performed as well as or better than the other robust
estimators. On the other hand, the results for uncontaminated data suggest
that the robustized estimators may not be quite as efficient as the Huber and
bisquare estimators.

Any of these estimates could be used for outlier rejection. Each sam-
ple was examined to determine whether a standard outlier rejection test
would identify the maximum of the data as an outlier. The test statistic,
(max{z;} —m)/s, was used, where m and s, were either the mean and stan-
dard deviation or their robustized versions. Values of the statistics were
compared to 5% and 1% critical values given in Grubbs and Beck (1972).
These critical values are based on the null hypothesis that the data are a
sample from a standard normal, m is the sample mean and s is the sample
standard deviation. For normal data with no contamination, the maximum



TABLE 2: Simulation results (x 1000) for normal model fitting.

Location

Normal Contaminated
MSE SD Bias MSE SD Bias
MLE 10.5 3.2 5.0 59.1 4.0 207.0
RMF 11.3 3.4 5.4 13.5 3.7 11.2
Median 15.4 3.9 2.9 19.8 3.8 717
Huber 10.5 3.2 4.6 21.6 3.4 100.4
Bisquare 10.6 3.3 4.4 15.4 3.4 584

Scale

Normal Contaminated
MSE SD Bias MSE SD Bias
MLE 4.8 2.2 -54 1154 46 307.1
RMF 6.4 25 -9.2 9.1 3.0 3.2
MAD 11.8 34 -75 17.2 3.7 585
Huber-r 5.8 24 -11.8 16.9 3.1 86.5
A-estimate 5.9 24 -29 10.8 2.9 45.9

likelihood estimates identified the maximum as an outlier 6.4% of the time
at the 5% level and 0.6% at 1% level, about as expected. The robustized
estimator tended to reject a bit too often, namely, 9.0% at the 5% level and
2.4% at 1% level. For the contaminated data, the MLE performed poorly,
rejecting the maximum 85 and 53 percent of the time, suggesting that mask-
ing is taking place. Masking was not a problem for the robustized estimates,
where the results were 98% at the 5% level and 95% at 1% level. These rates
are based on critical values for a situation where the null hypothesis does
not strictly apply. An alternative assessment was made using as critical val-
ues, the 95-th and 99-th percentiles robustized estimates, obtained from the
uncontaminated data. Doing so yields rejection rates for the contaminated
data of 97% and 91%.

7. FINAL COMMENTS

The goal of the procedure presented in this paper is to take advantage
of the structure of a model family to improve the fit by one of its members.
The model is fit to that part of the data that is most compatible with the
models in the family.
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The method has flexibility, in that it can be easily implemented with a
many model families, including multivariate normal, gamma, beta, T, F,
and double exponential. The method itself does not implicitly impose as-
sumptions like symmetry in data, the only assumption required is which
parametric family to use. Furthermore, the tuning constant can be used to
adapt the model family to the data, or unlike in other robust methods, can
be chosen optimally.
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a. Original data, g = —.98, 6% = 7.35 b. Weighted data, g = —.33, 62 = 2.57

Iteration g 62

0 -.98 7.35
-.33 3.85
=11 1.74
-06 1.19
-.05 1.06
-.04 1.03
-.04 1.01

Oy CU = W N~

c. Original data, fj = —.33, 62 = 3.85

d. Final model, i = —.04, 62 = 1.01

FIGURE 1: Robustized maximum likelihood estimation.
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¢ Shape Scale 100p(c)

277 4.08 32.7
3.32  3.30 16.0
4.44  2.36 11.7
5.21 1.97 374

8 543 1.88 69.8
1.0 5.50 1.86 84.3
1.2 5.53 1.85 86.3
1.4 59.55 1.84 83.5
1.6 2.9 1.83 79.3
1.8 5.62 1.82 74.9
2.0 29.66 1.80 70.8

o O

FIGURE 2: Robustized method of moments for gamma models.

13



