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Abstract: Cluster analytic methods include those which identify and

describe clusters by optimizing an objective function that measures

goodness of fit between a cluster description and data describing the

objects being studied. The most common are the partitioning meth-

ods, such as k-means, mixture analysis, and fuzzy clustering. These

procedures are not always robust in that results can misrepresent es-

sential structure due to the presence of noisy data, particularly out-

liers. On the other hand there are many approaches to robust estima-

tion, for example M -estimation. This paper will show how to system-

atically incorporate M -estimators into objective function based cluster

analysis. I will also discuss how concave functions play a fundamental

role in the structure and minimization of these objective functions.
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1. Introduction

Understanding and using cluster analysis is now more important than ever, because

of the increasing complexity of situations for which data analysis is needed. Cluster

analysis attempts to identify substructure in a data set or population by clustering

objects based on their being more similar to each other than to other objects in the

study. Objective function methods attempt to determine descriptions of clusters

that minimize a measure of incompatibility between the descriptions and data

describing the objects being studied.

A
��� �����	� 


y in the use of these methods is illustrated by an example. Figure

1.(a) shows a 2-dimensional data set with three concentrations of points that might

represent “clusters”. There are also points that appear to be outliers or noise.

The goal is to identify and describe the three clusters that represent the bulk of

the structure of the data using ellipses that give the location and shape of the

concentrations as illustrated in Figure 1.(b). Unfortunately, the result obtained

from a classic objective function method produces the ellipses shown in Figure

1.(c). The confusion caused by the noise in the data is apparent. This paper will

describe a general procedure for building objective functions for clustering that are

not as easily confused by noise, that is, they are robust to the presence of outliers

in data.

Section 2. describes the classical objective functions for partitioning, mixture

and fuzzy clustering methods. Section 3. discusses the M -estimator approach to

robust statistics. Section 4. shows how to combine M -estimation with clustering

objective functions.

This paper assembles twenty years of my work into a coherent whole. Nu-

merical experiments in abundance are not to be found since they have been done
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(a)

(b) (c)

Figure 1: Cluster analysis with outliers.
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in special cases elsewhere. The purpose of the paper is to provide a mathemati-

cal foundation for robust objective function clustering. In the final section I will

discuss some interesting threads that somehow keep arising in objective function

based data analysis.

2. Objective Function Clustering Methods

2.1 Objective functions for describing data

Objective function clustering methods are usually adaptations to the clustering

problem of objective function methods for describing the structure of data sets

as a whole. The methods begin with a choice of a type of data descriptor and a

measure of the incompatibility of a data point with a given descriptor. We will

focus on the situation where the objects under study are described by data vectors

x in a euclidean space Rd. In this context, incompatibility is measured by assigning

to a data point and a descriptor a number so that the more incompatible the two

are the larger the number is.

Perhaps, the simplest descriptor of a data set is a vector m in Rd that is to be

in some sense the “center” of the data, that is, describing its location. A simple

measure of incompatibility between a data point x and a data center m is |x−m|2

the square of the euclidean distance between them. The further x is from m, the

less compatible they are with each other. A best choice for a center of a data set

X = {x1, . . . , xn} can be obtained by minimizing the total incompatibility given

simply by

x � X

|x − m|2,

which leads, of course, to using m = x̄ = x/n

A next step is to add to the description of location a symmetric, positive



Robust Objective Function Cluster Analysis 5

definite matrix, S, that describes the shape of the data set in terms of ellipsoids

determined by the squared distance (x − m)T S−1(x − m). A “natural” choice for

total incompatibility is J(m, S) = x(x − m)T S−1(x − m), which is minimized as

a function of m by x̄, but has no minimum as a function of S. On the other hand, a

reasonable choice for the S is the data covariance matrix Ŝ = (x− x̄)(x− x̄)T /n,

which can be obtained as a minimizer of modifications of J . These modifications

are obtained as follows.

If S is a symmetric matrix, then there is an orthonormal basis for Rd of

eigenvectors of S, so that S = B � BT , where B is the orthogonal matrix whose

columns are the basis vectors and � is a diagonal matrix with corresponding

eigenvalues of S along the main diagonal. For a function g : R 
 R we ex-

tend g to a function gM taking symmetric matrices to symmetric matrices by

gM (L) = diag(g(l1), . . . , g(ld)) for a diagonal matrix L, and for any symmetric

matrix, S, gM (S) = BgM
� ��� BT . Using this notion and tr(A) to denote the trace

of a matrix A, it was shown in Windham (2000) that if g is concave and increasing,

G satisfies g(s� ) � G(s)(s� − s) + g(s) for all s and s� , t = (m, S), and

r(x, t) = (x − m)T GM (S)(x − m) + tr(gM (S) − GM (S)S), (1)

then L(t) = x r(X, t) is minimized by (x̄, Ŝ), the sample mean and covariance

matrix. Moreover, if g(0) � 0 then r(x, t) � 0 for all x, m, and positive semidefinite

S. The function G will typically be the derivative of g.

For example, for g(s) = log(s), then G(s) = 1/s and r(x, t) = (x−m)T S−1(x−

m) + log det S+ a constant. This example does not satisfy the condition that

g(0) = 0, but g(s) = log(1 + s) does and yields r(x, t) = (x − m)T (I + S)−1(x −

m)+ tr(log(I +S) − (I +S)−1S), which has been used in many of the examples in

this paper. The functions h in Table 1 also satisfy the necessary criteria, so that
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r(x, t) is non-negative.

Therefore, for a population descriptor t, a measure of incompatibility, r(x, t),

between a data point x and t, and a data set X, for our purposes the “best”

population descriptor is the value of t that minimizes the objective function

L(t) =
x � X

r(x, t).

2.2 Adapting objective functions to clustering

An objective function can be constructed for cluster analysis by introducing an-

other variable that describes in some sense membership in clusters. It is assumed

that there are k clusters or subpopulations represented by the data and that k is

fixed.

The three famous objective function clustering procedures are partitioning

methods, mixture analysis, and fuzzy clustering.

• Partitioning: For C1, . . . , Ck a partition of the data into clusters and de-

scriptors t1, . . . , tk, one for each cluster,

i x � Ci

r(x, ti)

is the total incompatibility between the data and the given cluster structure,

so find the C1, . . . , Ck and t1, . . . , tk that minimize it.

• Mixture analysis: This approach assumes that the data are a sample

from a population whose probability density is a finite mixture of densities

of the form e−r(x,ti) and the structure is determined by finding t and p =

(p1, . . . , pk) to maximize

x

log
i

pie
−r(x,ti)
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where pi is the probability of belonging to the i-th subpopulation. In this

case, t and p are maximum likelihood estimators.

• Fuzzy clustering: This method is based on the notion that some concepts

that appear to define sets really do not. For example, who is in the “set

of tall people”? There is no clear
����
����

in height that would universally

be accepted as the dividing line between tall and not tall. A fuzzy set

is a function that assigns to each object a number between zero and one

that measures the degree to which the object has the property that the set

represents. A fuzzy partition of Rd is a vector of k such functions defined on

Rd, u = (u1, . . . , uk), with ui the membership function for the i-th cluster

and restricted so that ui(x) = 1 for each x. A fuzzy clustering is obtained

by finding u and t to minimize

x i

um
i (x) r(x, ti)

where m > 1 is a fixed parameter used to adjust “fuzziness” of the clusters.

The larger m is the fuzzier the clusters will be and the closer m is to one,

the closer the results are to the partitioning results. Bezdek and Pal (1991)

survey the literature on the subject.

These methods can be described in a manner that somewhat unifies the objec-

tive function philosophy. Define a cluster structure, a, by a = {a1, . . . , ak}, where

ai is a function that assigns to each point x in Rd a number 0 � ai(x) � 1 with

i ai(x) = 1.

The variable a is incorporated into the objective functions as follows.
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• Partitioning methods: Choose a and t to minimize

L(a, t) =
i x

ai(x)r(x, ti). (2)

• Mixture analysis: Choose a, t,and p to minimize

L(a, t, p) =
i x

ai(x)(r(x, ti) − log pi + log ai(x)). (3)

where i pi = 1.

• Fuzzy clustering: Choose a and t to minimize

L(a, t) =
i x

am
i (x)r(x, ti). (4)

The solution is obtained in all cases by an alternating optimization that at

least decreases the objective function and converges, though the solution produces

usually only a local minimum and in rare circumstances a saddle point. Details of

the properties of the algorithm and the equivalence to the earlier formulation of

the objective functions can be found in Windham (1987) and Bezdek, et al. (1987).

In general, the procedure iterates from current values of the variables, ac, tc and

for mixtures pc to the next iterate, a+, t+, p+. Choose an initial value for a.

Repeat the following until the
��� ���������	���

between successive parameter values,

is � ������� ���
tly small.

1. Choose t+ so that for each i, t+i minimizes

x

ac
i(x)r(x, ti)

This step will be discussed in more detail shortly.

For mixtures: Choose p+ by p+
i = x ac

i (x)/n
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2. Choose a+

• For partitioning:

a+
i (x) =

1, if r(x, t+i ) � r(x, t+j ) for all j

0, otherwise
(5)

The function ai identifies a cluster Ci = {x : ai(x) = 1}, that contains

the data least incompatible with ti.

• For mixture analysis:

a+
i (x) =

p+
i e−r(x,t+i )

j p+
j e−r(x,t+j )

(6)

The value ai(x) is the probability of belonging to the i-th subpopula-

tion, knowing x.

• For fuzzy clustering:

a+
i (x) =

r(x, t+i )
1

1−m

j r(x, t+j )
1

1−m

(7)

The value ai(x) is the degree of membership of x in the i-th fuzzy

cluster.

Step 1 requires that x ai(x)r(x, ti) be minimized in ti. How this is done,

naturally depends on r. But, the objective function is just a weighted version a

non-clustering objective function, so the minimization might be straightforward.

For example, if r(x, t) is the function described in (1), then the minimizing values

m and S are

m̂i =
x

ai(x)x/
x

ai(x)

Ŝi =
x

ai(x)(x − m̂)(x − m̂)T /
x

ai(x)
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Step 2 is also an optimization step, in that, a+ is precisely the value of a that

minimize the objective function in a for a fixed t = t+.

The fact that mixture analysis is based on a probability density function model

warms the hearts of statisticians everywhere. In fact, all three clustering methods

can be viewed as based on density function models.

Substituting the values of a that minimize the objective function for a fixed t

leads to equivalent objective functions in only t

Partitioning:
x

min
i

(r(x, ti))

Mixture: −
x

log
i

pie
−r(x,ti)

Fuzzy:
x

(
i

r(x, ti)
1/1−m)1−m

And doing a little arithmetic in the partitioning and fuzzy case, leads to the

fact that minimizing the usual objective function is equivalent to maximizing the

appropriate one of the following “log-likelihood” functions.

Partitioning:
x

log max
i

e−r(x,ti)

Mixture:
x

log
i

pie
−r(x,ti)

Fuzzy:
x

log e−(
i
r(x,ti)1/1−m)1−m

So, all three methods can be viewed as based on density functions maxi e
−r(x,ti)

for partitioning, i pie
−r(x,ti) for mixtures, and e−(

i
r(x,ti)

1/1−m)1−m

for fuzzy

clustering. This observation, if nothing else, allows one to see how similar these

three methods are to each other. The similarity is illustrated in Figure 2, which

shows each of the three density functions for a simple one-dimensional, two cluster

situation.

The next step will be to consider the problem of making the estimation process

more robust.
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0
0

Partitioning

Mixture
Fuzzy

Figure 2: Density functions for clustering methods

3. Robust M-Estimation

The solutions to optimizing objective functions are called M -estimators in the

context of robust statistical analysis. For the moment we will forget the cluster-

ing problem and return to estimating parameters to minimize objective functions

L(t) = x r(x, t). Hampel, et al. (1986) and Huber (1981) discuss M -estimators

in detail and introduce a variety of procedures for estimating location and shape.

As it happens many of the most popular robust M -estimators can be obtained

in a systematic way from familiar objective functions. The procedure is to replace

r(x, t) in the objective function with h(  r(x, t))  , where h is a concave, increasing

function and  is a positive constant.

The function h will be called a robustizer. The concavity of h reduces the
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impact of larger values of incompatibility relative to smaller ones. The
�����!��


is illustrated in Figure 3 which shows the robustizers for the Huber, Cauchy, and

Welsch robustizers. Table 1 shows the robustizer, h. for some of the most common

robust estimation procedures. For those with two possible values, the change

occurs at r = 1.

The constant  is a “tuning” parameter. Larger values of  increase the
�����!��


of the robustizer, since smaller values of r(x, t) are magnified. On the other hand,

when h is
��� �"���#���

tiable at zero, $ (x, t) approaches h� (0)r(x, t) as  goes to zero,

so that less robustizing occurs for  ’s close to zero. How  should be chosen is

a problem, in that the same value will have
��� �����#���

t
�����!��
&%

depending on the

scale of the data. Table II of Holland and Welsch (1977) gives values used for

achieving 95%
������� ���	��'

in estimating location under a standard normal model.

The constant  = 1/c2, where c is the value in the table. These choices give, at

least, a ball park value to use and are listed in Table 1.

There is a circumstance in which it is possible to compensate for  in a rea-

sonable way. If r(x, m, S) = (x − m)T GM (S)(x − m) + tr(gM (S) − GM (S)S) as

in (1), then in
�����!��


one is assuming that the clusters are essentially shaped like

ellipsoids. Therefore, a reasonable model for the situation would be that data are

from a normal distribution ( (x, µ, )*� and that the parameters µ and ) are the real

descriptors of data. If one uses the Welsch robustizer, and minimizes the theoreti-

cal analog of the objective function for the model Rd(1 − e−+&, (x,m,S)) ( (x, µ, )*� dx

to obtain m - and S - then the following hold.

µ = m -
) = S - (I − 2  ". (S - )S - )−1 (8)

Therefore, one can adjust the solutions to compensate for the value of  used with
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Huber
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Figure 3: Huber, Cauchy, and Welsch robustizers.

data by using these formulae with x̄ for m - and Ŝ for S - . A similar approach was

used successfully in Windham (1995).

Estimates for t are obtained from the robustized objective function with an

iterative procedure that at least decreases the objective function as the iterations

proceed. The procedure uses a function H which satisfies h(r) � H(r0)(r − r0) +

h(r0) for all r and r0. This function exists since h is concave and is usually the

derivative of h, see Table 1.

1. Choose an initial tc to be the value of t that minimizes x r(x, t).

2. Repeat until the change in successive iterates is � ������� ���
tly small:

Find t+ to minimize

x

H(  r(x, tc))r(x, t)
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h(r) H(r)  
None r 1 0

Median 2r
1

2 r−
1

2 1

Huber
r

2r
1

2 − 1

1

r−
1

2

0.553

Biweight
1
3 (1 − (1 − r)3)

1
3

(1 − r)2

0
0.046

Cauchy
for /0� 0

1
1−1 ((1 + r)1−1 − 1), /32= 1

log(1 + r), / = 1
(1 + r)−1 0.176

Fair 2(r
1

2 − log(1 + r
1

2 )) (1 + r
1

2 )−1 0.510

Logistic 2 log(cosh(r
1

2 )) r−
1

2 tanh(r
1

2 ) 0.689

Talwar
r
1

1
0

0.128

Welsch 1 − e−r e−r 0.112

Andrews
24 2 (1 − cos(5 r

1

2 ))
44 2

sin(5 r
1

2 )/(5 r
1

2 )
0

0.558

Table 1: Robustizers

That this procedure reduces the objective function follows from h(r+) � H(rc)(r+−

rc) + h(rc) and the fact that the minimization ensures that H(rc)r+ � H(rc)rc.

Therefore, h(r+) � h(rc).

It is also apparent that the minimization problem to be solved at each iteration

again is a weighted version of the unrobustized problem, so it is likely to be easily

solved, as was the case with the extension to clustering objective functions. The

role function H in forming the weight also provides insight into how the robustizing

works. The weighting characteristics are clearly indicated in Figure 4.
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Figure 4: Weighting function in robust estimation

4. Robustizing Objective Function Clustering

Robustizing a clustering objective function is now quite straightforward. Merely

replace r(x, ti) with $ (x, ti) = h(  76 (x, ti)) 8� in (2), (3) and (4).

The minimization procedure is obtained by incorporating one iteration of the

robustizing procedure into the clustering procedure to obtain

Robust Objective Function Clustering Algorithm

1. Choose an initial ac. Choose tc so that tci minimizes x ac
i (x)r(x, ti).

2. Repeat the following until the
��� �"���#���	���

between successive parameter val-

ues, is � ������� ���
tly small.
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(a) Choose t+ so that for each i, t+i minimizes

x

ac
i (x)H(  !6 (x, tci ))r(x, ti)

For mixtures: Choose p+ by p+
i = x ac

i (x)/n

(b) Choose a+ as in (5), (6) or (7) with $ in place of r.

The procedure is an alternating optimization algorithm in the sense described

in Windham (1987), so each iteration decreases the objective function.

The ellipses in Figure 1.(b) were obtained by procedure using the Cauchy

metric, g(s) = log(1 + s), and the Welsch robustizer, with  = 0.112.

When the Welsch robustizer is used and r(x, t) is of the form (1), the procedure

can be modified to compensate for  . In Step 2(a) t+i is adjusted as in (8) for each

i before proceeding to 2(b). Then, in 2(b) use r(x, t) instead of $ (x, t) in obtaining

a+. The latter adjustment compensates for the shrinking caused by  in the

membership functions. With these adjustments the procedure is no longer and

alternating optimization and so the convergence properties are not clear. It has

been my experience that the modified procedure behaves well provided  is not so

large as to make the adjusted shape matrix negative semidefinite. A similar, but

more specialized approach is described in Windham (1996).

5. Conclusion

This papers assembles several pieces of work into a coherent whole. The whole itself

has two pieces, the robust objective functions and the algorithm for optimizing

them.

The common thread in robust and clustering objective function methodology

is the appearance of concavity and its
�����!��


on successfully numerically solving the
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problem. The latter is based on the fact that for a concave, increasing function h,

its derivative h, rc is any value of r, and r+ is any value of r satisfying H(rc)r+ �
H(rc)rc.

h(r+) � H(rc)(r+ − rc) + h(rc) � h(rc).

This inequality changes the problem of minimizing h(r) to minimizing H(rc)r, a

weighted version of the problem without the added concavity.

The concavity appears in three places.

1. Metric functions, (x − m)T G(S)(x − m) + tr(g(S) − G(S)S) = tr(G(S)((x −

m)(x − m)T − S) + g(S)), which ensures that S = Ŝ minimizes x(x −

mT G(S)(x − m) + tr(g(S) − G(S)S) = tr(G(S)(Ŝ − S) + g(S))

2. Robustizers h for M -estimation.

3. Cluster analysis objective functions are obtained by putting r(x, t) or $ (x, t)

into

• for partitioning, h(r) = mini(ri)

• for mixtures, h(r) = − log( i pie
−ri)

• for fuzzy clustering, h(r) = ( i r
1/(1−m)
i )(1−m).

which are concave functions, increasing in each variable and H(r) is nothing

more than corresponding a+, namely, Hi(r) = 9�: 8 9 ri is given by

• for partitioning, Hi(r) =
1, if ri � rj for all j
0, otherwise

• for mixtures. Hi(r) = pie
−ri/ j pje

−rj

• for fuzzy. Hi(r) = r
1

1−m

i / j r
1

1−m

j .
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Many methods for modeling the real world using data are based on goodness-

of-fit objective functions. People have produced algorithms that appear to find

solutions, but the seemingly good behavior of the procedure is not always under-

stood at first. In some cases, the behavior has been understood at a later date,

and in some cases, not yet. Or perhaps for a reweighting procedure, they can

be understood, by asking if the weight is the built from the derivative of some

concave function in the background. If so, the the procedure is an alternating

optimization algorithm that decreases the objective function and most likely will

be well-behaved.
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