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1. Introduction

Twenty years ago I gave a lecture on cluster analysis wherein I stated
that certain clustering algorithms involved minimizing an objective func-
tion built with a concave function. A member of the audience insisted
that one does not minimize concave functions. Admitting that this per-
son was correct, I spent the remainder of the year trying to explain to
him and to myself why concavity was there and why it was the reason
the algorithm worked. Since then I have continued to work in cluster
analysis and also in robust statistical estimation and optimization. I
have found many times that concave functions have played a fundamen-
tal role in the structure of and minimization of badness-of-fit functions
used in these areas of data analysis. This paper describes that role.

As examples, I will describe three instances of the use of concave
functions: building measures of badness-of-fit, building robust M -estima
tors, and building clustering objective functions. In each of these cases
extreme values of either parameters or data need to be penalized. I will
discuss how and why concavity is involved in the penalizing process.
Finally, I will put all three together to build a comprehensive, flexible
fit criterion for robust cluster analysis.

Concavity also facilitates the minimization of the fit criteria using
iterative majorization (Heiser, 1995) as will be described in Section 7.

This paper organizes and unifies the common thread of concavity
that runs through the several examples. The role of concavity has not
always been recognized in data analysis, and a fundamental role it is.
The latter is the main point of this paper.

2. Concave Functions

Concave functions are involved in data analysis in reducing the influ-
ence of extreme values of some measure of fit and optimizing an objec-
tive function built from the measure. Before examining specific uses of
concave functions, I will review the basic facts about them that will be
useful here.

There are many characterizations of concave functions, but the fol-
lowing is the best for our purposes. A function, f : Rp � R is concave

on a set S, if for each r in S there is a 1 × p matrix, F(r), satisfying for
all r and r0 in S

f(r)
�

F(r0)(r − r0) + f(r0). (1)

When f is ��� ���	�
�	� tiable, the matrix F(r) is its derivative and concavity
simply says that the graph of f always lies below its tangent planes. For
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Figure 1: Types of concave functions.

this paper, I will use lower case letters for a concave function and the
same upper case letter for the 1 × p matrix valued function required for
the linear term in (1).

Another, perhaps more common definition of concavity is that for
any r1 and r2 in a convex set S and 0

����
1

f(
�
r1 + (1 − �

)r2) � ���
(r1) + (1 − �

)f(r2)

That is, the value of f on a convex combination of vectors exceeds the
convex combination of the values.

Suppose that r represents a measure of fit between data and parame-
ters describing data for which large values suggest poor fit. The �	������� of
concave functions on reducing the influence of extreme values is shown
in Figure 1. In each case, f(r) increases as r does, but f(r)

�
r and the

��� ���	���	����� increases as r increases, so that the influence of large values
of r is reduced.

In building the measures of fit themselves, Section 3, concavity is
used to penalize extreme values of the parameters in the measure, so
that desirable minima exist. In robust estimation, Section 4, concavity
reduces the influence of outliers, and in cluster analysis, Section 5, con-
cavity localizes on a cluster and reduces the influence in describing the
cluster of data from other clusters.
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3. Parameter Estimation Using Measures of Fit

The basic goal of exploratory data analysis is to summarize data with
manageable quantities that describe some informative characteristics of
the data. For example, for a set X of n data points in Rd, the mean
x̄ = x x/n gives a “central” location for the data, and the covariance
or scatter matrix, Ŝ = x(x − x̄)(x − x̄)T /n describes the shape of the
data set in terms of ellipsoids determined by a “natural” choice of a
metric, (x − x̄)T Ŝ−1(x − x̄).

It is even more satisfying when a “natural” choice is a “best” choice
in some sense. For example, the squared Euclidean norm, |x − m|2, is
a measure of the fit between a data point x with a possible center of
concentration m, in that the further m is from x, the more incompatible
they are with each other. It is well-known that the mean is the value of
m that minimizes x |x − m|2, that is x̄ is a “best” choice for a center
of a data set in that it is on the average least incompatible with the data
in the set.

It would be nice to have a similar measure of fit that leads to Ŝ being
a best choice. A natural candidate would be to minimize d(m,S) =

x(x−m)TS−1(x−m), particularly since for any positive semidefinite
S, we have d(x̄,S)

�
d(m,S) for all m. It ���������	� then to minimize

d(x̄,S) = x(x − x̄)TS−1(x − x̄) = n tr(ŜS−1), where tr(·) denotes the
trace of a matrix. Unfortunately, the function d has no minimum as
a function of S. The problem is that the larger S is (in terms of say
eigenvalues), the smaller d is. People have added “penalty terms” to the
measure to discourage large values of scale. Finding such terms leads
to the first use of concavity, namely using concave functions to penalize

large values of scale in measuring fit.

The first step is to describe how to extend a function g : R � R to
a function assigning symmetric matrices to symmetric matrices. The
function g is extended to a symmetric matrix S by letting g(S) =
B diag(g( � 1), . . . , g( � d))B

T , where B is an orthogonal matrix whose
columns are a basis of eigenvectors of S and � 1, . . . , � d are the corre-
sponding eigenvalues. Using this notion, we have the following.

If g is concave and increasing, and G satisfies g(s)
�

G(s0)(s − s0)+
g(s0) for all s and s0, then

D(m,S) =
x

(x − m)T G(S)(x − m) + tr(g(S) − G(S)S) (2)

is minimized by m = x̄ and S = Ŝ, the sample mean and covariance
matrix. Moreover, if g(0) � 0 then (x − m)T G(S)(x − m) + tr(g(S) −
G(S)S) � 0 for all x, m, and positive semidefinite S.
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This result was presented in Windham (2000) without proof, so I
will give one here.

Clearly, for a fixed, positive semidefinite S, D(m,S) is minimized for
m = x̄. It ���������	� � then to show that D(x̄,S) = n tr(G(S)(Ŝ−S)+g(S))
is minimized as a function of S by S = Ŝ.

Letting ˆ! be a diagonal matrix of eigenvalues of Ŝ, it follows by
moving orthogonal matrices around in the trace function that, it �
�������	�
to show that tr(G(S)( ˆ! −S)+g(S)) � i g(ˆ� i) for all positive semidef-
inite S. Letting S = " ! " T and again moving the orthogonal matrix
B, we have from the concavity of g

tr(G(S)( ˆ! − S) + g(S)) =
i

G( � i)
j

b2
ij �̂ j − � i + g( � i)

�
i

g
j

b2
ij

ˆ� j .

Since rows and columns of B are orthonormal vectors, i b2
ij = j b2

ij =

1, so that j b2
ij

ˆ� j is a convex combination of the eigenvalues of Ŝ.

Therefore, from the concavity of the function g, we have i g j b2
ij �̂ j �

i j b2
ijg(ˆ� j) = j g(ˆ� j) and the result follows.

Moreover, if g(0) � 0, then as above, (x − m)T G(S)(x − m) +
tr(g(S)−G(S)S) = D(m,S) for a data set consisting of x alone, so that
D(m,S) is minimized by m = x and S = 0. That is, the minimum value
of (x − m)TG(S)(x − m) + tr(g(S) − G(S)S) is D(x,0) = g(0) � 0,
completing the proof.

It should be noted that since g is increasing, we have G � 0, so that
G(S) is at least positive semidefinite. Therefore, (x − m)TG(S)(x −
m) + tr(g(S) − G(S)S) acts like a metric on the data space.

The goal was to build a fit function that is minimized by the mean
and scatter matrix of the data. Any function of the form in (2) is
minimized by x̄ as long as G(S) is positive semidefinite, which re-
quires only that G be non-negative. If so, then one needs to minimize
tr(G(S)(Ŝ − S) + g(S)) as a function of S. For simplicity consider
the one-dimensional case with g any twice ��� ���	���	� tiable function. For
d(s) = g # (s)(ŝ − s) + g(s), we have d# (s) = g # # (s)(ŝ − s), so that ŝ is a
critical point. It is the concavity of g that ensures that ŝ is, in fact, a
minimizer.

For example, with g(s) = log(s), then G(s) = 1/s, and we have the
measure (x−m)TS−1(x−m)+ log detS, ignoring constant terms. This
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example is popular, but does not satisfy the condition that g(0) = 0,
which ensures that the measure of fit is non-negative, and facilitates
its use in the applications that follow. The function g(s) = log(1 + s),
for example, does satisfy g(0) = 0 and yields (x − m)T (I + S)−1(x −
m) + tr(log(I + S) − (I + S)−1S). The second column of Table 1 lists
several functions that can be used for g. For functions in the table with
two descriptions, except for the Cauchy, the first expression applies for
0
�

r
�

1 and the second for r > 1.
We have now a procedure for building badness-of-fit measures that

are minimized by the mean and scatter matrix of a data set and that
have properties that facilitate their use in data analysis.

4. Robust M-estimation

The notion of choosing descriptors for a data set by minimizing total
badness-of-fit between points in the set and some summary descriptor of
the data is called M -estimation in the context of robust statistics. Huber
(1981) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986) discuss
M -estimators in detail and give a variety of procedures for estimating
location and shape.

In general, if t is a descriptor of a data set and r(x, t) is a measure
of fit between a data point x and a descriptor t, then the M -estimator
for t is the value of t that minimizes x r(x, t). The discussion of the
previous section provides measures of fit for M -estimation of location
and shape.

Some estimators are not robust, in that their values are sensitive to
a few data points that may not represent the information in the bulk of
the data. The mean, for example, is sensitive to outliers. The median,
on the other hand, is robust to the presence of outliers. The median
is also an M -estimator, in that, it is the value of m that minimizes

x |x − m|. The measure of fit used for the median is the composition
with the measure used for the mean and a concave, increasing function.
In particular, |x − m| = |x − m|2. In other words, we have f(r) = r
with r = |x − m|2. Therefore, the median should be less sensitive than
the mean to outliers because the concavity of the square root reduces
their influence.

This observation is easily generalized to provide a structure for ro-

bustizing M -estimators. For a function r(x, t) measuring fit between x

and t and a concave, increasing function h, let $ (x, t) = h(r(x, t)). Since
h is increasing, $ is also a measure of fit with the influence of extreme
incompatibility reduced by the concavity of h. Therefore, minimizing

x $ (x, t) = x h(r(x, t)) should lead to more robust estimates of t
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Table 1: Robustizers.

h(r) %
None r 0

Median r
1

2 1

Huber
r

2r
1

2 − 1
0.553

Biweight
1

3
(1 − (1 − r)3)

1

3

0.046

Cauchy
for &(' 0

1

1−) ((1 + r)1− ) − 1), &+*= 1

log(1 + r), & = 1
0.176

Fair 2(r
1

2 − log(1 + r
1

2 )) 0.510

Logistic 2 log(cosh(r
1

2 )) 0.689

Talwar
r
1

0.128

Welsch 1 − e−r 0.112

Andrews
2, 2 (1 − cos(- r

1

2 ))
4, 2

0.558

For functions with two descriptions, except for the Cauchy, the first expression applies

for 0 . r . 1 and the second for r > 1. Tuning constants / are discussed in Section

4.

than would be obtained by minimizing x r(x, t).

There are many robust M -estimators of location in the literature.
What is not so widely known is that often these can be obtained by
composing |x − m|2 with some concave function. A list of the estima-
tors is given in Table 1 along with the concave function h. These concave
functions can be used with any measures of fit as was illustrated by Ver-
boon and Heiser (1992) who applied the Huber and biweight functions
to squared residuals for orthogonal Procrustes analysis.

One caution that must be observed is that the measure of fit is
changed by simply rescaling the data. Doing so artificially changes the
point in the data space where the robustizing has a particular level of
influence. Tuning constants are used to compensate for data scale, that
is, use $ (x, t) = h(0 r(x, t)) 0 for a positive tuning constant 0 . Dividing
by 0 is not necessary, but doing so often results in 0 = 0 corresponding to
no robustizing. This situation occurs when h is ��� ���	���	� tiable at zero and
h# (0) = H(0) = 1. Under these conditions $ (x, t) approaches r(x, t) as 0
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approaches zero. In fact, whenever h is ��� ���	���	� tiable at zero, adjusting
h by constants will make h(0) = 0 and H(0) = 1 without 12�������3� ��4 the fit
interpretation. The functions in Table 1 satisfy these conditions except
for the median. Tuning constants can also compensate somewhat for
the ��� ���	���	� t levels concavity in ��� ���	���	� t choices for h. Possible tuning
constants for each method are also given in Table 1. These are based
on values appearing in Holland and Welsch (1977) for achieving 95%
�	���	� �	����5 in estimating location under a standard normal model. For
clarity, I will not include tuning constants in what follows, but one can
apply them as above, if desired.

5. Cluster Analysis

Cluster analysis attempts to identify substructure in a data set or popu-
lation by grouping objects together into “clusters” based on their being
more similar to each other than to other objects in the study. Objec-
tive function methods determine descriptions of clusters that minimize
a measure of fit between the descriptions and data describing the ob-
jects. The problem is that one needs to identify and describe a subset of
the data that forms a cluster in the presence of other data that should
not belong to the cluster. We need to find a description of a cluster by
identifying concentrations of objects that best fit a common description
while reducing the �	������� of objects �������	� �	� tly removed from the de-
scription that they should be identified with other clusters. Concavity
does precisely this. We will see that the contribution to the total fit of
a data point is greatest for the cluster description with which it is most
compatible, while the influence of fit for other clusters is reduced or even
ignored.

For an individual cluster, we will use r(x, t) as above to measure fit
between a data point x and a cluster descriptor t, such as location and
shape.

Three famous objective function clustering procedures are partition-
ing methods, mixture analysis, and fuzzy clustering.

• Partitioning: For C1, . . . , Ck a partition of the data into clusters
and descriptors t1, . . . , tk, one for each cluster,

i x 6 Ci

r(x, ti)

is the total fit between the data and the given cluster structure,
so that one finds the C1, . . . , Ck and t1, . . . , tk that minimize the
badness-of-fit.
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• Mixture analysis: This approach assumes that the data are a
sample from a population whose probability density is a finite mix-
ture of densities of the form e−r(x,ti) and the structure is deter-
mined by finding t and p = (p1, . . . , pk) to maximize

x

log
i

pie
−r(x,ti)

where pi is the probability of belonging to the i-th subpopulation.
In this case, t and p are maximum likelihood estimates. Redner
and Walker (1984) survey the topic.

• Fuzzy clustering: This method is based on the notion that some
concepts that appear to define sets really do not. For example, who
is in the “set of tall people”? There is no clear �����879� in height
that would universally be accepted as the dividing line between
tall and not tall. A fuzzy set is a function that assigns to each
object a number between zero and one that measures the degree
to which the object has the property that the set represents. A
fuzzy partition of Rd is a vector of k such functions defined on
Rd, u = (u1, . . . , uk), with ui the membership function for the i-th
cluster and restricted so that i ui(x) = 1 for each x. A fuzzy
clustering is obtained by finding u and t to minimize

x i

um
i (x) r(x, ti)

where m > 1 is a tuning constant used to adjust the “fuzziness”
of the clusters. The larger m is the fuzzier the clusters will be and
the closer m is to one, the closer the results are to partitioning.
Bezdek and Pal (1991) survey the literature on the subject.

These three objective functions can be converted into compositions of
the measures fit for each of the clusters given by r(x, t) = (r(x, t1), . . . ,
r(x, tk)) with concave functions, increasing in each variable. These
functions are obtained for partitioning and fuzzy clustering, by replac-
ing the clusters with the sets C1, . . . , Ck and membership functions
u1, . . . , uk that minimize the respective objective functions for given
descriptors, namely Ci = {x : r(x, ti) = minj r(x, tj)} and ui(x) =
r(x, ti)

1/(1−m)/ j r(x, tj)
1/(1−m). The conversion for mixtures just puts

a minus sign in front to change maximizing to minimizing. The function
r :i (x, t,p) = r(x, ti) − log pi is used to measure fit for mixtures. In fact,
the same can be done for partitioning and fuzzy clustering, so that all
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Table 2: Concave functions in cluster analysis.

Method a Ai

Partitioning mini(ri)
1 if ri = minj(rj)
0 otherwise

Mixture − log( i e−ri)
e−ri

j e−rj

Fuzzy ( i r
1/(1−m)
i )1−m r

1/(1−m)
i

j r
1/(1−m)
j

m

0

r r0 1

0.5 1 0

a

a

a

P

F

M

0.5 1
(a) (b)

Figure 2: Concavity in cluster analysis.

three contain a parameter p = (p1, . . . , pk) satisfying i pi = 1 and de-
scribing how the data are apportioned among the clusters. The concave
functions, a, are shown in Table 2.

The resulting fit functions are

• Partitioning: x mini r :i (x, t,p)

• Mixture: − x log i e
−r ;

i
(x,t,p)

• Fuzzy clustering: x i r :i (x, t,p)1/1−m
1−m

A simplified illustration will show how concavity facilitates cluster
analysis. In Figure 2(a) the line r0 represents a measure of incompat-
ibility with 0 in that the further x is from 0 the greater the measure.
Similarly, r1 represents a measure of incompatibility with 1. Figure 2(b)
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shows the associated functions from Table 2 applied to r0 and r1, namely,
for partitioning aP = min(r0, r1), for mixtures aM = − log(e−r0 + e−r1)
translated by a constant for the purpose of the illustration so that its
graph goes through goes through 0 and 1, and for fuzzy clustering
aF = (r−1

0 + r−1
1 )−1, using m = 2. In terms of incompatibility, aP

ignores incompatibility with 1 for x closer to 0 than to 1 and ignores
incompatibility with 0 for x closer to 1 than to 0. The concavity ensures
that near 0 the sense of incompatibility is preserved, that is incompat-
ibility with 0 increases as you move away from 0 and similarly for near
1. The functions for mixture and fuzzy clustering are simply smoother
versions of the same phenomenon.

One disadvantage to this approach is that the sense of “cluster” is
lost. The parameters ti describe the clusters in terms of characteristics
like location and shape, but what are the clusters as sets of objects?
Fortunately, the notion of cluster membership is still present in the Ai’s.
In particular we have the following interpretations.

• Partitioning:
Ci = {x : r :i (x, t,p) = minj r :j (x, t,p)} = {x : Ai(r : (x, t,p)) = 1}
is the subset of the data most compatible with the i-th cluster
description, that is Ci is the i-th cluster.

• Mixtures:
Ai(r : (x, t,p)) = pie

−r(x,ti)/ j pje
−r(x,tj) is the estimate for the

conditional probability of belonging to the i-th subpopulation know-
ing the data x.

• Fuzzy clustering:
The fuzzy membership function for the ith fuzzy cluster is

ui(x) = Ai(r : (x, t,p))
1

m

= r :i (x, t,p)1/(1−m)/
j

r :j (x, t,p)1/(1−m) .

The clustering procedures I have discussed so far use continuously
varying parameters to describe the clusters. Many procedures do not.
For example, the medoid method described in Kaufman and Rousseeuw
(1990) attempts to identify objects among those under study to serve as
descriptors for the location of the clusters, the “medoids”. The cluster
associated to a given medoid consists of the objects the least dissimilar
to it. The medoids are chosen to be the objects for which the sum of
the dissimilarities to them of the objects associated to them is the least.
We can formulate a badness-of-fit function whose minimum identifies
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the medoids and their clusters as follows. Let {j1, . . . , jk} be the indices
of k distinct objects that are candidates for medoids, and djl denote the
dissimilarity between the j-th and l-th objects, then the badness-of-fit
function is

min
{j1,...,jk}

l

min
i

djil

The concave function min(·) plays its usual role. In particular, mini

ignores objects not associated to the i-th medoid and min{j1,...,jk} ignores
objects not chosen to be medoids. Windham (1985) describes a fuzzy
version of the same idea. The reader is encouraged to create a “mixture”
version as well.

6. Robust Cluster Analysis

Robust cluster analysis is now quite straight forward to achieve. Simply
replace r(x, ti) by h(r(x, ti)). This approach was introduced for mixture
analysis in Windham (2000), but the concavity in both cluster analysis
and M -estimation makes it possible to use the same idea in partitioning
and fuzzy clustering. In particular, for any function a from Table 2, the
badness-of-fit function

x

a(r(x, t1) − log p1, . . . , r(x, tk) − log pk) =
x

a(r : (x, t,p))

becomes

x

a(h(r(x, t1)) − log p1, . . . , h(r(x, tk)) − log pk) =
x

a(< : (x, t,p))

Figure 3 shows the impact of robustizing in an example presented in
Windham (2000). Figure 3(a) shows the results of finding three clusters
using a mixture clustering function with a Cauchy measure of fit, based
on g(s) = log(1+s). The confusion caused by the presence of the outliers
is apparent. Figure 3(b) shows the results obtained with the mixture
clustering, Cauchy fit, and the Welsch robustizer with tuning constant
0.112. The robustized result clearly identifies the structure of the bulk
of the data without being unduly influenced by the outliers.

7. Minimization Procedures

The role that concavity plays in constructing minimizing algorithms has
been recognized for some time. A comprehensive discussion is given
in Heiser (1995) where it is viewed as a special case of iterative ma-
jorization. It is also described in Lange, Hunter and Yang (2000), which
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(a) (b)

Figure 3: Cluster analysis with outliers.

includes the algorithm for finding the median as an example. Both of
these articles provide a wealth of references to many other applications
of the idea in constructing algorithms.

The iterative majorization with concave functions is based on the
following consequence of concavity. From (1), one can see that if you
are at r0 then you can decrease f(r) by decreasing F(r0)r. In particular,
if

F(r0)r
�

F(r0)r0, (3)

then

f(r)
�

F(r0)(r − r0) + f(r0)
�

f(r0).

Iteratively applying (3) will produce a decreasing sequence of values
of f . If f is bounded below, the sequence of function values, f(r), will
converge. Finally, if f is also increasing in each variable, then Fi(r0) � 0,
so F(r0)r can be decreased by simply decreasing each variable, ri, and
decreasing f(r) has then been reduced to decreasing a weighted version
of r. Decreasing r may not be ��� ������= �3> In fact, in applications r is
often a function of some parameter important to the context and we are
seeking the value of the parameter that minimizes f(r). The function
F(r0)r is often, at least locally, a convex function of that parameter and
can be easily minimized.

The articles mentioned above also contain detailed discussions of the
convergence properties of the algorithms. I mentioned that when the
objective function is bounded below a decreasing sequence of iterates
of the function itself will converge. More important is the question of
whether the corresponding sequence of parameters converges. In fact,
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there is no guarantee that they do converge and even when they do
they may not converge to minimizer. These articles along with Bezdek,
Hathaway, Howard, Wilson and Windham (1987) and Windham (1987)
discuss this problem.

The following describes the iterative procedures for robust estima-
tion, cluster analysis, and finally robust cluster analysis. Each of them
is the implementation of (3). The function F becomes a function H,
such as the derivative of an h from Table 1 in robust estimation, and
A = (A1, . . . , Ak) from Table 2 in cluster analysis.

Robust Estimation: Robust estimators can be computed from the
iterative process based on (3) simply by using the appropriate choice of
H, the derivative of a concave, increasing function, in (4) below. The
iterations proceed from the current value of t, tc, to next, t+. We will
use arg min

t
l(t) to denote the value of t that minimizes l(t). Beginning

with the initial tc to be the value of t that minimizes x r(x, t), the
iteration is

t+ = arg min
t

x

H(r(x, tc))r(x, t) (4)

The algorithm reduces the problem of minimizing the robustized
criterion to iteratively minimizing a weighted version of the unrobustized
function, a problem that is usually easy to solve. For example, if t =
(m,S) and r(x, t) = (x − m)T G(S)(x − m) + tr(g(S) − G(S)S) as in
Section 3, then the parameter updates are as follows. Letting wc(x) =
H(r(x, tc))/ x H(r(x, tc)), we have

m+ =
x

wc(x)x

S+ =
x

wc(x)(x − m+)(x − m+)T .

The value wc(x) simply weights the contribution of x in accordance with
the �	������� of the concave function h used for robustness.

Clustering: The algorithm for minimizing the objective functions iter-
ates from tc,pc to t+,p+ by

t+
i = arg min

t
x

Ai(r : (x, tc,pc))r(x, t)

p+
i = arg max

pi
x

Ai(r : (x, t+,pc)) log pi

= x Ai(r : (x, t+,pc))

j x Aj(r : (x, t+,pc))
.
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In the case where the parameters are location and scale, that is ti =
(mi,Si), the updates for those parameters are

m+
i =

x

wc
i (x)x

S+
i =

x

wc
i (x)(x − m+)(x − m+)T

where wc
i (x) = Ai(r : (x, tc,pc))/ x Ai(r : (x, tc,pc)) weights the contri-

bution of x to the next parameter estimates for the i-th cluster according
to its “membership” in the i-th cluster as described by the current pa-
rameter estimates.

Robust Clustering:

t+
i = arg min

t
x

Ai(< : (x, tc,pc))H(r(x, tc
i ))r(x, t)

p+
i = x Ai(< : (x, t+,pc))

j x Aj(< : (x, t+,pc))

When the parameters are location and scale, the updates for those pa-
rameters are

m+
i =

x

wc
i (x)x

S+
i =

x

wc
i (x)(x − m+)(x − m+)T

where the weight

wc
i (x) = Ai(< : (x, tc,pc))H(r(x, tc

i ))/
x

Ai(< : (x, tc,pc))H(r(x, tc
i ))

has two terms, one for clustering and the other for robustness.

8. Conclusion

The influence of extreme values on parameter estimation in data analysis
can be controlled with concave functions without seriously complicating
the problem to be solved. This paper illustrates this fact with three
examples where ��� ���	���	� t things need to be controlled. In the first, ex-
treme values of scale were controlled so that well-behaved measures of
fit could be built that would have the covariance or scatter matrix as
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a minimizer. In the M -estimation example, the influence of outliers on
parameter estimates was controlled with concave functions. Finally, in
finding a description of a cluster in a cluster analysis, the influence of
data from other clusters is reduced by combining fits to cluster descrip-
tions with concave functions. Moreover, the common thread of applying
concave functions to control extreme values allows one to combine all
three to build a procedure for robust cluster analysis, that estimates
location and scale within a cluster.
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